Skip to main content
Log in

Interstratification in Malawi Vermiculite: Effect of Bi-Ionic K-Mg Solutions

  • Published:
Clays and Clay Minerals

Abstract

The conversion of Malawi vermiculite into K-vermiculite by treatment with bi-ionic K-Mg solutions of 1 N total ion concentration (KCl and MgCl2 mixed solutions of ionic strength equal to 0.5) was studied by following the 00l X-ray powder diffraction (XRD) reflections. Flakes of Mg-saturated samples were treated at 160°C during 24 hr with bi-ionic solutions, with the K concentration varying from zero to pure 1 N KCl solution. The K-Mg interlayer exchange began at a critical value xK = .0196 (K/Mg = 1/100) of the molar fraction of K in the solution. Above the critical concentration and extending to pure 1 N KCl, the XRD diagrams were characteristic of a 10-Å/14-Å interstratification that had a marked tendency towards regularity. Experiments with KCl and MgCl2 mixed solutions of ionic strength equal to 0.75 and 1.0 showed that the exchange began at the same critical value xK as the experiments with ionic strength equal to 0.5, if the K added was equivalent. X-ray fluorescence analysis further showed that the amount of K adsorbed was proportional to the molar fraction xK and to the proportion of K-saturated layers (10 Å) in the interstratification. To explain the mechanism of this quasi-regular interstratification, a crystallochemical rather than a thermodynamic mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. (1982) Nomenclature for regular interstrati-fication: Clay Miner. 17, 243–248.

    Article  Google Scholar 

  • Basset, W. A. (1959) The origin of vermiculite at Libby: Amer. Mineral. 35, 590–595.

    Google Scholar 

  • Boettcher, A. L. (1966) Vermiculite, hydrobiotite and bio-tite in the Rainy Creek igneous complex near Libby, Montana: Clay Miner. 6, 283–296.

    Article  Google Scholar 

  • Brindley, G. W. and Gillery, F. M. (1956) X-ray identification of chlorite species: Amer. Mineral. 41, 169–181.

    Google Scholar 

  • Brindley, G. W., Zalba, P. E., and Bethke, C. M. (1983) Hydrobiotite, a regular 1:1 interstratification of biotite and vermiculite layers: Amer. Mineral. 68, 420–425.

    Google Scholar 

  • de la Calle, C., Suquet, H., and Pons, C. H. (1988) Stacking order in a 14.3-A Mg-vermiculite: Clays & Clay Minerals 36, 481–490.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D., Machardy, W. J., Newman, A. C. D., Ahlrich, J. L., and Rimsaite, J. Y. H. (1971) Evidence for loos of octahedral iron from oxidised biotites and vermiculites: Mineral. Mag. 38, 1–37.

    Article  Google Scholar 

  • Giese, R. F. (1971) Hydroxyl orientation in muscovite as indicated by electrostatic calculations: Science 172, 263–264.

    Article  Google Scholar 

  • Guinier, A. (1964) Théorie et Technique de la Radio-Cristallographie: Dunod, Paris, 740 pp.

    Google Scholar 

  • Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J., and Vanden Heuvel, R. C. (1952) Weathering sequence of clay size minerals in soils and sediments. II. Chemical weathering of layer silicate: Soil Sci. Soc. Amer. Proc. 16, 3–6.

    Article  Google Scholar 

  • MacEwan, D. M. C., Ruiz-Amil, A., and Brown, G. (1961) Interstratified clay minerals: in The X-Ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 393–445.

    Google Scholar 

  • MacEwan, D. M.C. and Ruiz-Amil, A. (1975) Interstratified clay minerals: in Soil Components. I. Inorganic Components, G. E. Gieseking, ed., Springer-Verlag, New York, 265–334.

    Chapter  Google Scholar 

  • Méring, J. (1949) Interference des rayons X dans les systèmes désordonnée: Acta Crystallogr. 2, 371–377.

    Article  Google Scholar 

  • Morel, S. W. (1955) Biotite in the basement complex of southern Nyasaland: Geol. Mag. 92, 241–255.

    Article  Google Scholar 

  • Newman, A. C. D. and Brown, G. (1987) The chemical constitution of clays: in Chemistry of Clays and Clay Minerals, A. C. D. Newman, ed., Mineralogical Society, London, 1–128.

    Google Scholar 

  • Norrish, K. (1973) Factors in the weathering of mica to vermiculite: in Proc. Int. Clay Confi, Madrid, 1972, J. M. Serratosa, ed., Div. Ciencias C.S.I.C., Madrid, 417–432.

    Google Scholar 

  • Pons, C. H. (1980) Mise en évidence des relations entre la structure et la texture dans les systèmes eau-smectites par la diffusion aux petits angles du rayonnement X synchrotron: Ph.D. thesis, Univ. Orleans, Orleans, France, 175 pp.

    Google Scholar 

  • Pons, C. H., Pozzuoli, A., Rausell-Colom, J. A., and Calle, C., de la (1989) Mécanisme de passage de l’état hydraté à une couche à l’état zéro couche d’une vermiculite-Li de Santa Olalla: Clay Miner. 24, 479–494.

    Article  Google Scholar 

  • Radoslovich, E. W. (1960) The structure of muscovite: Acta Cristallogr. 13, 919–925.

    Article  Google Scholar 

  • Radoslovich, E. C. (1963) The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces: Amer. Mineral. 48, 76–99.

    Google Scholar 

  • Reynolds, R. C. (1980) Interstratified clay minerals: in Crystal Structures of Clay Minerals and their X-Ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Rhoades, J. D. and Coleman, N. T. (1967) Interstratification in vermiculite and biotite produced by potassium sorption. I. Evaluation by simple X-ray diffraction pattern inspection: Soil Sci. Soc. Amer. Proc. 31, 366–372.

    Article  Google Scholar 

  • Sato, M. (1965) Structure of interstratified (mixed-layer) minerals: Nature 208, 70–80.

    Article  Google Scholar 

  • Sawhney, B. L. (1967) Interstratification in vermiculite: in Clays & Clay Minerals, Proc. 15th Natl. Conference, Pittsburgh, Pennsylvania 1966, S. W. Bailey, ed., Pergamon Press, New York, 75–84.

    Google Scholar 

  • Sawhney, B. L. (1969) Regularity of interstratification as affected by charge density in layer silicates: Soil Sci. Soc. Amer. Proc. 33, 42–46.

    Article  Google Scholar 

  • Sawhney, B. L. and Reynolds, R. C. (1985) Interstratified clays as fundamental particles: A discussion: Clays & Clay Minerals 33, p. 559.

    Article  Google Scholar 

  • Stephen, I. (1952) A study of rock weathering with reference of the Malvern Hills. Part I. Weathering of biotite and granite: J. Soil Sci. 87, 20–33.

    Article  Google Scholar 

  • Vila, E. and Ruiz-Amil, A. (1988) Computer program for analysing interstratified structures: Powder Diffraction 3, 7–11.

    Article  Google Scholar 

  • Vila, E., Ruiz-Amil, A., and Martin de Vidales, J. L. (1988) Computer program for X-ray powder diffraction analysis: Internal Report, C.S.I.C., Madrid, Spain.

    Google Scholar 

  • Walker, G. F. (1950) Trioctahedral minerals in the soil clays of northeast Scotland: Mineral. Mag. 29, 72–84.

    Google Scholar 

  • Weed, S. B. and Leonard, R. A. (1968) Effect of K-uptake by K-depleted micas on the basal spacing: Soil Sci. Soc. Amer. Proc. 32, 335–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin de Vidales, JL., Vila, E., Ruiz-Amil, A. et al. Interstratification in Malawi Vermiculite: Effect of Bi-Ionic K-Mg Solutions. Clays Clay Miner. 38, 513–521 (1990). https://doi.org/10.1346/CCMN.1990.0380508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380508

Key Words

Navigation