Skip to main content
Log in

Thermal Stability of Halloysite by High-Pressure Differential Thermal Analysis

  • Published:
Clays and Clay Minerals

Abstract

Platy (Te Puke, New Zealand), cylindrical (Spruce Pine, North Carolina), and spherical (North Gardiner mine, Huron, Lawrence County, Indiana) halloysite samples were analyzed by high-pressure differential thermal analysis (HP-DTA) to determine the effect of morphological and chemical differences on their respective thermal stability. In halloysite, these morphological differences imply structural features. The metastable phase relations of each are analogous to those of kaolinite. At 1 bar, the platy, cylindrical, and spherical samples showed peak temperatures (maximum deflection in the dehydroxylation endotherm) of 560°, 578°, and 575°C, respectively, whereas at about 600 bars the peak temperatures were 622°, 655°, and 647°C. At low pressures the observed reaction is related to dehydroxylation: halloysite (H) metahalloysite (MH) + vapor (V), whereas higher pressures produce melting reactions, either H + V = metaliquid (ML) for conditions of P(H2O) = P(total), or H + MH = ML for P(H2O) < P(total). The PT conditions of the invariant point, H + MH + ML + V, for each system are: Te Puke, 612° ± 4°C, 25 ± 7 bars; Spruce Pine, 657 ± 2°C, 30 ± 7 bars; North Gardiner, 652° ± 2°C, 34 ± 7 bars. The lower thermal stability of the Te Puke sample may be related to its higher iron content, although additional data are necessary to confirm that it is not related also to the platy structure. Furthermore, morphological differences between the cylindrical and spherical varieties appear to have had little effect on the energy required to dehydroxylate these halloysite structures. Exceptionally high values obtained for the dehydroxylation enthalpies using the van’t Hoff equation, compared with values derived using other methods, may be explained by a 10–15-bar excess in the intracrystalline H2O fugacity during dehydroxylation. Intracrystalline fugacity is defined here as the H2O fugacity within crystallites and is not related to the partial pressure of H2O around individual particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, L. T., Faust, G. T., Hendricks, S. B., Insley, H., and McMurdie, H. F. (1943) Relationship of the clay minerals halloysite and endellite: Amer. Mineral. 28, 1–18.

    Google Scholar 

  • Anderson, G. M. (1977) Fugacity, activity and equilibrium constant: in Application of Thermodynamics to Petrology and Ore Deposits, Mineralogical Association of Canada Short Course Handbook 2, H. J. Greenwood, ed., 17–37.

    Google Scholar 

  • Askenasy, P. E., Dixon, J. B., and McKee, T. R. (1973) Spheroidal halloysite in a Guatemalan soil: Soil Sci. Amer. Proc. 37, 799–803.

    Article  Google Scholar 

  • Bates, T. F. (1959) Morphology and crystal chemistry of 1:1 layer lattice silicates: Amer. Mineral. 44, 78–114.

    Google Scholar 

  • Bates, T. F., Hildebrand, F. A., and Swineford, A. (1950) Morphology and structure of endellite and halloysite: Amer. Mineral. 35, 463–484.

    Google Scholar 

  • Bramao, L., Cady, J. G., Hendricks, S. B., and Swerdlow, M. (1952) Criteria for the characterization of kaolinite, halloysite, and a related mineral in clays and soils: Soil Science 73, 273–287.

    Article  Google Scholar 

  • Brindley, G. W. and Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals: Trans. Faraday Soc. 42, 198–205.

    Article  Google Scholar 

  • Chukhrov, F. V. and Zvyagin, B. B. (1966) Halloysite, a crystallochemically and mineralogically distinct species: in Proc. Int. Clay Conf., Jerusalem, 1966, Vol. 1, L. Heller and A. Weiss, eds., Israel Prog. Sci. Transi., Jerusalem, 11–25.

    Google Scholar 

  • Churchman, G. J. and Theng, B. K. G. (1984) Interactions of halloysites with amides: Mineralogical factors affecting complex formation: Clay Miner. 19, 161–175.

    Article  Google Scholar 

  • Dixon, J. B. and McKee, T. R. (1974) Internal and external morphology of tubular and spheroidal halloysite particles: Clays & Clay Minerals 22, 127–137.

    Article  Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1964) The i.r. spectra of layer silicates: Spectrochim. Acta 20, 1149–1173.

    Article  Google Scholar 

  • Hofmann, U., Endell, K., and Wilm, D. (1934) Röntgeno-graphische und kolloidchemische Untersuchungen über Ton: Angew. Chem. 47, 539–547.

    Article  Google Scholar 

  • Holloway, J. R. (1971) Internally heated pressure vessels: in Research for High Pressure and Temperature, G. C. Ulmer, ed., Springer-Verlag, New York, 217–258.

    Chapter  Google Scholar 

  • Hope, E. W. and Kittrick, J. A. (1964) Surface tension and the morphology of halloysite: Amer. Mineral. 49, 859–866.

    Google Scholar 

  • Hughes, I.R. (1966) Mineral changes of halloysite on drying: New Zealand J. Sci. 9, 103–113.

    Google Scholar 

  • Koster van Groos, A. F. (1979) Differential thermal analysis of the system NaF-Na2COj to 10 kbar: J. Phys. Chem. 83, 2976–2978.

    Article  Google Scholar 

  • Koster van Groos, A. F. and ter Heege, J. P. (1973). The high-low quartz transition up to 10 kilobar pressure: J. Geol. 81, 281–286.

    Google Scholar 

  • Kunze, G. W. and Bradley, W. F. (1964) Occurrence of a tabular halloysite in a Texas soil: in Clays and Clay Minerals, Proc. 12th Natl. Conf, Atlanta, Georgia, 1963, W. F. Bradley, ed., Pergamon Press, New York, 523–527.

    Google Scholar 

  • McKee, T. R., Dixon, J. B., Whitehouse, G., and Harling, D. F. (1973) Study of Te Puke halloysite by a high resolution electron microscope: Abstr. 31st Ann. Electron Microscopy Soc. Amer. Meeting, New Orleans, Louisiana, 1973, 200–201.

    Google Scholar 

  • Noro, H. (1986) Hexagonal platy halloysite in an altered tufFbed, Komaki City, Aichi Prefecture, central Japan: Clay Miner. 21, 401–415.

    Article  Google Scholar 

  • Pampuch, R. (1966) Infrared study of thermal transfermation of kaolinite and the structure of metakaolin: Polska Akad. Nauk Prace Mineral. 6, 53–70.

    Google Scholar 

  • Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates, VI. Serpentine and kaolin morphology: Amer. Mineral. 48, 368–378.

    Google Scholar 

  • Ross, C. S. and Kerr, P. F. (1934) Halloysite and allophane: U.S. Geol. Surv. Prof. Pap. 185-G, 135–148.

    Google Scholar 

  • Roy, R. and Osborn, E. F. (1954) The system Al2O3-SiO2-H2O: Amer. Mineral. 39, 853–885.

    Google Scholar 

  • Stone, R. L. (1952) Differential thermal analysis of kaolin-group minerals under controlled partial pressures of H2O: J. Amer. Ceram. Soc. 35, 90–99.

    Article  Google Scholar 

  • Sunderman, J. A. (1963) Mineral deposits at the Mississip-pian-Pennsylvanian unconformity in southwestern Indiana: M.S. thesis, Indiana University, Bloomington, Indiana, 115 pp.

    Google Scholar 

  • Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes—Morphology and composition of halloysite: in Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 573–584.

    Google Scholar 

  • Weber, J. N. and Roy, R. (1965a) Dehydroxylation of kaolinite, dickite, and halloysite: J. Amer. Ceram. Soc. 48, 309–311.

    Article  Google Scholar 

  • Weber, J. N. and Roy, R. (1965b) Dehydroxylation of kaolinite, dickite and halloysite: Heats of reaction and kinetics of dehydration at P(H2O) = 15 psi: Amer. Mineral. 50, 1038–1045.

    Google Scholar 

  • Yeskis, D., Koster van Groos, A. F., and Guggenheim, S. (1985) The dehydroxylation of kaolinite: Amer. Mineral. 70, 159–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S.L., Guggenheim, S. & Koster van Groos, A.F. Thermal Stability of Halloysite by High-Pressure Differential Thermal Analysis. Clays Clay Miner. 38, 477–484 (1990). https://doi.org/10.1346/CCMN.1990.0380503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380503

Key Words

Navigation