Skip to main content
Log in

Transmission and Analytical Electron Microscopic Study of Mixed-Layer Illite/Smectite Formed as an Apparent Replacement Product of Diagenetic Illite

  • Published:
Clays and Clay Minerals

Abstract

Ordered illite/smectite (I/S) and illite in a pelitic rock from a prograde metamorphic sequence in North Wales were observed by transmission electron microscopy. The dominant phyllosilicate noted was diagenetic-metamorphic illite, occurring as subparallel packets of layers, each about a few hundred Ångstroms thick. It exhibited two-layer polytypism (presumably 2M1) and numerous strain features and had a composition of (K1.21Na0.12)(Al3.36Fe0.31Mg0.33)(Si6.28Al1.72)O20(OH)4.

I/S occurred as thick packets of wavy layers having 10-Å subperiodicity and sharp differences in contrast in successive lattice fringes. All stages in a replacement series were noted, from one or two layers of smectite within illite, through thin packets of I/S, to thick packets that contained inherited deformation textures of diagenetic-metamorphic illite. Deformed illite was replaced by I/S more commonly than was undeformed illite. The I/S replacing undeformed original illite had significantly greater order, primarily of R1 type (ISISIS…), than that replacing deformed illite. R> 1 I/S occurred as small crystallites and contained relatively less smectite than the ordered I/S, Single smectite layers were spaced within several illite layers, forming curved packets of layers. IISIIS… (R2) and IIISIIIS… (R3) ordering were present locally, as was discrete smectite. Analytical electron microscopic analyses indicated that the I/S, (K0.46Na0.43)(Al3.75Fe0.06Mg0.19)(Si6.26Al1.74)O20(OH)4, was rectorite-like in composition and had smaller (Mg + Fe) contents and greater Al/Si ratios than the coexisting illite, which was also anomalous in terms of general crystal-chemical relationships between coexisting illite and I/S in burial diagenesis environments. The I/S appears to have formed by replacement of diagenetic-metamorphic illite, presumably at very low temperatures under hydrous conditions via dissolution and crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H. and Buseck, P. R. (1990) Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging: Amer. Mineral. 75, 267–275.

    Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments: Clays & Clay Minerals 33, 228–236.

    Article  Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1986a) Transmission and analytical electron microscopy of the smectite-to-illite transition: Clays & Clay Minerals 34, 165–179.

    Article  Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1986b) Transmission electron microscope data for rectorite: Implications for the origin and structure of “fundamental particles”: Clays & Clay Minerals 34, 180–186.

    Article  Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1987) Kaolinitization of bio-tite: TEM data and implications for an alteration mechanism: Amer. Mineral. 72, 353–356.

    Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1989) Mixed-layer illite/smectite from Gulf Coast shales: A reappraisal of transmission electron microscope images: Clays & Clay Minerals 37, 542–546.

    Article  Google Scholar 

  • Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47–60.

    Article  Google Scholar 

  • Baxter, S. M. and Peacor, D. R. (1988) TEM observation of polytypism in illite: in Prog. Abstracts, 25th Annual Meeting, The Clay Minerals Society, Grand Rapids, Michigan, p. 74.

    Google Scholar 

  • Beaufort, D. and Meunier, A. (1983) Pétrographie characterization of an argillic hydrothermal alteration containing illite, K-rectorite, K-beidellite, kaolinite and carbonates in a cupromolybdenic porphyry at Sibert (Rhone, France): Bull. Mineral. 106, 535–551.

    Google Scholar 

  • Bell, T. E. (1986) Microstructure in mixed-layer illite/smec-tite and its relationship to the reaction of smectite to illite: Clays & Clay Minerals 34, 146–154.

    Article  Google Scholar 

  • Boles, J. R. and Franks, S. G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation: J. Sediment. Petrol. 49, 55–70.

    Google Scholar 

  • Brown, G. (1984) Crystal structures of clay minerals and related phyllosilicates: Phil. Trans. Royal Soc. Lond. A311, 221–240.

    Article  Google Scholar 

  • Brown, G. and Brindley, G. W. (1984) X-ray dim-action procedures for clay mineral identification: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 305–360.

    Google Scholar 

  • Brown, G. and Weir, A. H. (1963) The identity of rectorite and allevardite: in Proc. Int. Clay Conf. Stockholm, 1963, Vol. 1, I. Th. Rosenquist and P. GrafF-Petersen, eds., Pergamon Press, Oxford, 27–35.

    Google Scholar 

  • Churchman, G. J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils: Clay Miner. 15, 59–76.

    Article  Google Scholar 

  • Cole, W. F. (1966) A study of long-spacing mica-like mineral: Clay Miner. 6, 261–281.

    Article  Google Scholar 

  • Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: A review: Sedimentology 15, 281–346.

    Article  Google Scholar 

  • Foscolos, A. E. and Kodama, H. (1974) Diagenesis of clay minerals from lower Cretaceous shales of northeastern British Columbia: Clays & Clay Minerals 22, 319–335.

    Article  Google Scholar 

  • Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis: Sedimentology 15, 261–279.

    Article  Google Scholar 

  • Frey, M. (1987) Very low grade metamorphism of clastic sedimentary rocks: in Low Temperature Metamorphism, M. Frey, ed., Chapman and Hall, New York, 9–58.

    Google Scholar 

  • Guthrie, G. D., Jr. and Veblen, D. R. (1989) High resolution transmission electron microscopy of mixed-layer illite/smectite: Computer simulations: Clays & Clay Minerals 37, 1–11.

    Article  Google Scholar 

  • Henin, S., Esquevin, J. and Caillere, S. (1954) Sur la fa-brosite de certains minéraux de nature montmorillonitique: Soc. Franc. Bull. Mineral. Crist. 11, 491–499.

    Google Scholar 

  • Hower, J. (1967) Order of mixed-layering in illite/mont-morillonites: in Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966, S. W. Bailey, ed., Pergamon Press, New York, 63–74.

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A. ( 1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence: Geol. Soc. Amer. Bull. 87, 725–737.

    Article  Google Scholar 

  • Huff, W. D., Whiteman, J. H., and Curtis, C. D. (1988) Investigation of a K-bentonite by X-ray powder diffraction and analytical transmission electron microscopy: Clays & Clay Minerals 36, 83–93.

    Article  Google Scholar 

  • Iijima, S. and Buseck, P. R. (1978) Experimental study of disordered mica structures by high-resolution electron microscopy: Acta Cryslallogr. A34, 709–719.

    Article  Google Scholar 

  • Karpova, G. V. (1969) Clay mineral post-sedimentary ranks in terrigenous rocks: Sedimentology 13, 5–20.

    Article  Google Scholar 

  • Kisch, H. J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks: in Diagenesis in Sediments and Sedimentary Rocks 2, G. Larsen and G. V. Chilingar, eds., Elsevier, Amsterdam, 289–493.

    Google Scholar 

  • Klimentidis, R. E. and Mackinnon, D. R. (1986) High-resolution imaging of ordered mixed-layer clays: Clays & Clay Minerals 34, 155–164.

    Article  Google Scholar 

  • Kodama, H. (1966) The nature of the component layers of rectorite: Amer. Mineral. 51, 1035–1055.

    Google Scholar 

  • Kubler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinite de l’illite: Bull. Centre Rech. Pau-SNPA 2, 385–397.

    Google Scholar 

  • Lee, J. H. and Peacor, D. R. (1986) Expansion of smectite by laurylamine hydrochloride: Ambiguities in transmission electron microscope observations: Clay & Clay Minerals 34, 69–73.

    Article  Google Scholar 

  • Lee, J. H., Peacor, D. R., Lewis, D. D., and Wintsch, R. P. (1984) Chlorite-illlite/muscovite interlayered and inter-stratified crystals: A TEM/STEM study: Contrib. Mineral. Petrol. 88, 372–385.

    Article  Google Scholar 

  • Lee, J. H., Peacor, D. R., Lewis, D. D., and Wintsch, R. P. (1986) Evidence for syntectonic crystallization for the mudstone to slate transition at Lehigh Gap, Pennsylvania, U.S.A.: J. Structural Geol. 8, 767–780.

    Article  Google Scholar 

  • Lorimer, G. W. and Cliff, G. (1976) Analytical electron microscopy of minerals: in Electron Microscopy in Mineralogy, H. R. Wenk, ed., Springer-Verlag, New York, 506–519.

    Chapter  Google Scholar 

  • McKee, T. R. and Buseck, P. R. (1978) HRTEM observation of stacking and ordered interstratification in rectorite: in Electron Microscopy 1978, Vol. 1, J. M. Sturgess, ed., Microscopical Society of Canada, Toronto, Canada, 272–273.

    Google Scholar 

  • Merriman, R. J. and Roberts, B. (1985) A survey of white mica crystallinity and polytypes in pelitic rocks of Snow-donia and Llyn, North Wales: Mineral. Mag. 49, 305–319.

    Article  Google Scholar 

  • Merriman, R. J., Roberts, B., and Peacor, D. R. (1990) A transition electron microscope study of white mica crystallite size distribution in a mudstone-to-slate transitional sequence, North Wales, U.K.: Contrib. Mineral. Petrol, (in press).

    Google Scholar 

  • Nadeau, P. H., Tait, J. M., McHardy, W. J., and Wilson, M. J. (1984a) Interstratified XRD characteristics of physical mixtures of elementary clay particles: Clay Miner. 19, 67–76.

    Article  Google Scholar 

  • Nadeau, P. H., Wilson, M. J., McHardy, W. J., and Tait, J. M. (1984b) Interparticle diffraction: A new concept for interstratified clays: Clay Miner. 19, 757–769.

    Article  Google Scholar 

  • Newman, A. C. D. and Brown, G. (1987) The chemical constitution of clays: in Chemistry of Clays and Clay Minerals, A. C. D. Newman, ed., Mineralogical Society, London, 1–129.

    Google Scholar 

  • Nishiyama, T. and Shimoda, S. (1981) Ca-bearing rectorite from Tooho mine, Japan: Clays & Clay Minerals 29, 236–240.

    Article  Google Scholar 

  • Pevear, D. R., Williams, V. E., and Mustoe, G. E. (1980) Kaolinite, smectite and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia: Clays & Clay Minerals 28, 241–254.

    Article  Google Scholar 

  • Rateyev, M. A., Gradusov, B. P., and Kheirov, M. B. (1969) Potassium rectorite from the Upper Carboniferous of the Samarskaya Luka (Samara Bend of the Volga): Dokl. Akad. NaukS.S.S.R. 185, 116–119.

    Google Scholar 

  • Reynolds, R. C., Jr. (1984) Interstratified clay minerals: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Reynolds, R. C., Jr. and Hower, J. (1970) The nature of interlayering in mixed-layer illite/montmorillonite: Clays & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Rimmer, S. M. and Eberl, D. D. (1982) Origin of an un-derclay as revealed by vertical variations in mineralogy and chemistry: Clays & Clay Minerals 30, 422–430.

    Article  Google Scholar 

  • Roberts, B. (1979) The Geology of Snowdonia and Llyn, Adam Hilger Ltd, Bristol, United Kingdom, 183 pp.

    Google Scholar 

  • Roberts, B. and Merriman, R. J. (1985) The distinction between Caledonian burial and regional metamorphism in metapelites from North Wales: An analysis of isocryst patterns: J. Geol. Soc. London 142, 615–624.

    Article  Google Scholar 

  • Środoń, J. (1984) X-ray powder diffraction identification of illitic materials: Clays & Clay Minerals 32, 337–349.

    Article  Google Scholar 

  • Środoń, J. and Eberl, D. D. (1984) mite: in Micas, Reviews in Mineralogy, Volume 13, S. W. Bailey, ed., Mineralogical Society of America, Washington, D.C., 495–544.

    Google Scholar 

  • Tomita, K. (1974) Similarities of rehydration and rehy-droxylation properties of rectorite and 2M clay micas: Clays & Clay Minerals 22, 79–85.

    Article  Google Scholar 

  • Tomita, K. ( 1977) Experimental transformation of 2Msericite into a rectorite-type mixed-layer mineral by treatment with various salts: Clays & Clay Minerals 25, 302–308.

    Article  Google Scholar 

  • Tomita, K. (1978) Experimental transformation of 2M sericite into a rectorite-type mixed-layer mineral by treatment with various salts. II. Experiments using a magnetic stirrer and a centrifuge: Clays & Clay Minerals 26, 209–216.

    Article  Google Scholar 

  • Tomita, K. and Sudo, T. (1968) Interstratified structure formed from a pre-heated mica by acid treatments: Nature 217, 1043–1044.

    Article  Google Scholar 

  • Vali, H. and Koster, H. M. (1986) Expanding behavior, structural disorder, regular and random irregular interstrati-fication of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy: Clay Miner. 21, 827–859.

    Article  Google Scholar 

  • van der Pluijm, B. A., Lee, J. H., and Peacor, D. R. (1988) Analytical electron microscopy and the problem of potassium diffusion: Clays & Clay Minerals 36, 498–504.

    Article  Google Scholar 

  • Veblen, D. R. and Ferry, J. M. (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologie observations: Amer. Mineral. 68, 1160–1168.

    Google Scholar 

  • Veblen, D. R., Guthrie, G. D., Jr., Livi, K. J. T., and Reynolds, R. C, Jr. (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results: Clays & Clay Minerals 38, 1–13.

    Article  Google Scholar 

  • Velde, B. (1965) Experimental determination of muscovite polymorph stabilities: Amer. Mineral. 50, 436–449.

    Google Scholar 

  • Velde, B. (1985a) Clay mineral names and structure: in Clay Minerals: A Physico-chemical Explanation of their Occurrence, B. Velde, ed., Elsevier, New York, 7–17.

    Google Scholar 

  • Velde, B. (1985b) Mixed layered minerals in sequences of burial rocks (P-T space): in Clay Minerals: A Physico-chemical Explanation of their Occurrence, B. Velde, ed., Elsevier, New York, 334–359.

    Google Scholar 

  • Watts, N. L. (1980) Quaternary pedogenic calcretes from the Khalahari (southern Africa): Mineralogy, genesis and diagenesis: Sedimentology 27, 661–686.

    Article  Google Scholar 

  • Weaver, C. E. and Broekstra, B. R. (1984) Illite-mica: in Shale-Slate Metamorphism in Southern Appalachians, C. E. Weaver and Associates, Elsevier, New York, 67–97.

    Chapter  Google Scholar 

  • Wilson, M. J. and Nadeau, P. H. (1985) Interstratified clay minerals and weathering processes: in The Chemistry of Weathering, J. I. Drever, ed., Reidei, Dordrecht, The Netherlands, 97–118.

    Chapter  Google Scholar 

  • Yau, Y. C., Anovitz, L. M., Essene, E. J., and Peacor, D. R. (1984) Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reactions in the Marble Formation, Franklin, New Jersey: Contrib. Mineral. Petrol. 88, 299–306.

    Article  Google Scholar 

  • Yau, Y. C., Peacor, D. R., and McDowell, S. D. (1987) Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study: J. Sediment. Petrol. 57, 335–342.

    Google Scholar 

  • Yoder, H. S. (1959) Experimental studies on micas: A synthesis: in Clays and Clay Minerals, Proc. 6th Natl. Conf, Berkeley, California, 1957, Ada Swineford, ed., Pergamon Press, New York, 42–60.

    Google Scholar 

  • Yoder, H. S. and Eugster, H. P. (1955) Synthetic and natural muscovite: Geochim. Cosmochim. Acta 8, 225–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 471 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, WT., Peacor, D.R., Merriman, R.J. et al. Transmission and Analytical Electron Microscopic Study of Mixed-Layer Illite/Smectite Formed as an Apparent Replacement Product of Diagenetic Illite. Clays Clay Miner. 38, 449–468 (1990). https://doi.org/10.1346/CCMN.1990.0380501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380501

Key Words

Navigation