Skip to main content
Log in

Pyrogallol Transformations as Catalyzed by Nontronite, Bentonite, and Kaolinite

  • Published:
Clays and Clay Minerals

Abstract

The catalytic power of Ca-nontronite, Ca-bentonite, and Ca-kaolinite in promoting the abiotic ring cleavage of pyrogallol (1,2,3-trihydroxybenzene) and the associated formation of humic polymers was studied in systems free of microbial activity. The presence of Ca-kaolinite and especially Ca-nontronite in the pyrogallol solutions at pH 6.00 greatly enhanced the absorbance at both 472 and 664 nm of the supernatants. At an initial pH of 6.00 and at the end of a 90-hr reaction period, the amounts of CO2 released from the ring cleavage of pyrogallol and the yields of the resultant humic polymers formed in the reaction systems followed the same sequence: Ca-nontronite > Ca-kaolinite > Ca-bentonite. The data indicate that the catalytic power of Fe(III) on the edges and in the structure of nontronite was substantially greater than that of Al on the edges of kaolinite and montmorillonite and of a small amount of Fe(III) in the structure of montmorillonite in promoting the reactions. The infrared and electron spin resonance spectra and the solid-state, cross-polarization magic-angle-spinning 13C nuclear magnetic resonance spectra of humic polymers formed in the reaction systems resembled those of natural humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R. (1985) Isolation and concentration techniques for aquatic humic substances: in Humic Substances in Soil, Sediment, and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy, eds., Wiley, New York, 363–385.

    Google Scholar 

  • Borchardt, G. A. (1977) Montmorillonite and other smectite minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 293–330.

    Google Scholar 

  • Dixon, J. B. (1977) Caolinite and serpentine-group minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 357–403.

    Google Scholar 

  • Eaton, D. G. (1964) Complexing of metal ions with semi-quinones. An electron spin resonance study: Inorganic Chemistry 3, 1268–1271.

    Article  Google Scholar 

  • Eltantawy, I. W. and Arnold, P. W. (1973) Reappraisal of ethylene glycol monoethyl ether (EGME) method for surface area estimation of clays: J. Soil Sci. 24, 232–238.

    Article  Google Scholar 

  • Flaig, W., Beutelspacher, H., and Rietz, E. (1975) Chemical composition and physical properties of humic substances: in Soil Components, Vol. 1, Organic Components, J. E. Gieseking, ed., Springer-Verlag, New York, 1–211.

    Google Scholar 

  • Germida, J. J. and Casida, J. E., Jr. (1980) Myceloid growth of Arthrobacter globiformis and other Arthrobacter species: J. Bacteriol. 144, 1152–1158.

    Google Scholar 

  • Hatcher, P. G., Breger, I. A., and Mattingly, M. A. (1980) Structural characteristics of fulvic acids from continental shelf sediments: Nature 285, 560–562.

    Article  Google Scholar 

  • Hatcher, P. G., Schnitzer, M., Dennis, L. W., and Maciel, G. E. (1981) Aromaticity of humic substances in soils: Soil Sci. Soc. Amer. J. 45, 1089–1094.

    Article  Google Scholar 

  • Hayes, M. H. B. (1985) Extraction of humic substances from soils: in Humic Substances in Soil, Sediment, and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy, eds., Wiley, New York, 329–362.

    Google Scholar 

  • Jackson, M. L. (1979) Soil Chemical Analysis—Advanced Course, 2nd ed.: published by the author, Madison, Wisconsin, 100–166.

    Google Scholar 

  • Kumada, K. and Kato, H. (1970) Browning of pyrogallol as affected by clay minerals: Soil Sci. Plant Nutr. 13, 151–158.

    Article  Google Scholar 

  • Leenheer, J. A. (1985) Fractionation techniques for aquatic humic substances: in Humic Substances in Soil, Sediment, and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy, eds., Wiley, New York, 409–429.

    Google Scholar 

  • Martin, J. P. and Haider, K. (1980) Microbial degradation and stabilization of 14C-labeled lignins, phenols, and phenolic polymers in relation to soil humus formation: in Lig-nin Biodegradation: Microbiology, Chemistry and Potential Applications, Vol. I, T. K. Kirk, T. Higuchi, and H. Chang, eds., CRC Press, Inc., Boca Raton, Florida, 77–100.

    Google Scholar 

  • McBride, M. B., Sikora, F. J., and Wesselink, L. G. (1988) Complexation and catalyzed oxidative polymerization of catechol by aluminum in acidic solution. Soil Sci. Soc. Amer. J. 52, 985–993.

    Article  Google Scholar 

  • Olson, B. M., McKercher, R. B., and Germida, J. J. (1984) Microbial population in trifluralin-treated soil: Plant Soil 76, 379–387.

    Article  Google Scholar 

  • Preston, C. M., Rauthan, B. S., Rodger, C., and Ripmeester, J. A. (1982) A hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of p-benzoquinone polymers incorporating amino nitrogen compounds (“Synthetic humic acids”): Soil Sci. 134, 277–293.

    Article  Google Scholar 

  • Schnitzer, M. (1977) Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones: in Soil Organic Matter Studies II, IAEA-SM-211/7, Vienna, 117–130.

    Google Scholar 

  • Schnitzer, M. and Chan, Y. K. (1986) Structural characteristics of a fungal melanin and soil humic acid: Soil Sci. Soc. Amer. J. 50, 67–71.

    Article  Google Scholar 

  • Schnitzer, M. and Ghosh, K. (1982) Characteristics of water-soluble fulvic acid-copper and fulvic acid-iron complexes: Soil Sci. 134, 354–363.

    Article  Google Scholar 

  • Schnitzer, M. and Lévesque, M. (1979) Electron spin resonance as a guide to the degree of humification of peats: Soil Sci, 127, 140–145.

    Article  Google Scholar 

  • Schnitzer, M. and Preston, C. M. (1983) Effects of acid hydrolysis on the l3C NMR spectra of humic substances: Plant Soil 75, 201–211.

    Article  Google Scholar 

  • Senesi, N. and Schnitzer, M. (1977) Effect of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acids: Soil Sci. 123, 224–234.

    Article  Google Scholar 

  • Shindo, H. and Huang, P. M. (1985) The catalytic power of inorganic components in the abiotic synthesis of hydro-quinone-derived humic polymers: Appl. Clay Sci. 1, 71–81.

    Article  Google Scholar 

  • Solomon, D. H. (1968) Clay minerals as electron acceptors and/or electron donors in organic reactions: Clays & Clay Minerals 16, 31–39.

    Article  Google Scholar 

  • Solomon, D. H. and Hawthorne, D. G. (1983) Chemistry of Pigments and Fillers: Wiley, New York, 179–258.

    Google Scholar 

  • Swift, R. S. (1985) Fractionation of soil humic substances: in Humic Substances in Soil, Sediment, and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy, eds., Wiley, New York, 387–408.

    Google Scholar 

  • Tennakoon, D. T. B., Thomas, J. M., and Tricker, M. J. (1974) Surface and intercalate chemistry of layer silicates. Part II. An iron-57 Mössbauer study of the role of lattice-substituted iron in the benzidine blue reaction of mont-morillonite: J. Chem. Soc, Dalton, p. 2211.

    Google Scholar 

  • Tiessen, H., Bettany, J. R., and Stewart, J. W. B. (1981) An improved method for the determination of carbon in soils and soil extracts by dry combustion: Co. Soil Sci. PI. Anal. 12, 211–218.

    Article  Google Scholar 

  • Umbreit, W. W., Burris, R. H., and Stauffer, J. F. (1964) Manometric Techniques: A Manual Describing Methods Applicable to the Study of Tissue Metabolism, 4th ed.: Burgess Publishing, Minneapolis, Minnesota, 305 pp.

    Google Scholar 

  • Wang, M. C. and Huang, P. M. (1986) Humic macromol-ecule interlayering in nontronite through interaction with phenol monomers: Nature 323, 529–531.

    Article  Google Scholar 

  • Wang, M. C. and Huang, P. M. (1987) Catalytic polymerization of hydroquinone by nontronite: Can. J. Soil Sci. 67, 867–875.

    Article  Google Scholar 

  • Wang, T. S. C., Huang, P. M., Chou, Chang-Hung, and Chen, Jen-Hshuan (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances: in Interactions of Soil Minerals with Natural Organics and Microbes, P. M. Huang and M. Schnitzer, eds., SSSA Spec. Pub. 17, Soil Science Society of America, Madison, Wisconsin, 251–281.

    Google Scholar 

  • Wang, T. S. C., Kao, Ming-Muh, and Li, Song Wu (1978a) A new proposed mechanism of formation of soil humic substances: in Studies and Essays in Coemoration of the Golden Jubilee of Academia Sinica, Academia Sinica, Taipei, Taiwan, 357–372.

    Google Scholar 

  • Wang, T. S. C., Li, Song Wu, and Ferng, Y. L. (1978b) Catalytic polymerization of phenolic compounds by clay minerals: Soil Sci. 126, 15–21.

    Article  Google Scholar 

  • Wang, T. S. C., Wang, M. C., Ferng, Y. L., and Huang, P. M. (1983) Catalytic synthesis of humic substances by natural clays, silts, and soils: Soil Sci. 135, 350–360.

    Article  Google Scholar 

  • Wilson, M. A. and Goh, K. M. (1977) Proton-decoupled pulse Fourier-transform 13C magnetic resonance of soil organic matter: J. Soil Sci. 28, 645–652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M.C., Huang, P.M. Pyrogallol Transformations as Catalyzed by Nontronite, Bentonite, and Kaolinite. Clays Clay Miner. 37, 525–531 (1989). https://doi.org/10.1346/CCMN.1989.0370604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1989.0370604

Key Words

Navigation