Skip to main content
Log in

Aqueous-Chemical Control of the Tetrahedral-Aluminum Content Of Quartz, Halloysite, and other Low-Temperature Silicates

  • Published:
Clays and Clay Minerals

Abstract

Aqueous Al passes from octahedral to tetrahedral coordination over a narrow pH interval, or threshold. This interval is 5.5–6.5 at 25°C and shifts to lower pH as temperature increases. The concentration of aqueous tetrahedrally coordinated Al is a quasi-step function of the solution pH, and, by the mass-action law, so should be the amount of tetrahedral Al incorporated by a silicate that crystallizes from the aqueous solution. Qualitative support for this prediction (which applies to quartz, opal-CT, kaolin-group minerals, pyrophyllite, micas, chlorites, and other low-temperature silicates) comes from the very topology of equilibrium activity diagrams and from several pairs of associated waters and authigenic silicates from weathering, hydrothermal, and diagenetic environments. The uptake of tetrahedral Al also depends on the aqueous concentrations of monovalent cations and silica, and on the mineral’s structural constraints.

Solid solution of tetrahedral Al in halloysite in turn produces the characteristic bent or tubular crystals of this mineral. This genetic link between aqueous chemistry (mainly pH), tetrahedral-Al uptake by a low-temperature silicate, and the mineral’s crystal morphology may operate also in other silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, P. and Helgeson, H. C. (1984) Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays: Clays & Clay Minerals 31, 207–217.

    Article  Google Scholar 

  • Altschuler, Z. S., Dwornik, E. J., and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148–152.

    Article  Google Scholar 

  • Bates, T.F. (1959) Morphology and crystal chemistry of 1:1 layer lattice silicates: Amer. Mineral. 44, 78–114.

    Google Scholar 

  • Bates, T. F. (1971) The kaolin minerals: in The Electron-Optical Investigation of Clays, J. A. Gard, ed., Mineral-ogical Society, London, 109–148.

    Google Scholar 

  • Bowers, T. S., Jackson, K. J., and Helgeson, H. C. (1984) Equilibrium Activity Diagrams: Springer-Verlag, Berlin, 397 pp.

    Book  Google Scholar 

  • Brindley, G. W. (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 125–195.

    Google Scholar 

  • Chernov, A. A. (1984) Modern Crystallography III. Crystal Growth: Springer-Verlag, Berlin, 517 pp.

    Book  Google Scholar 

  • Cotton, F. A. and Wilkinson, G. (1962) Advanced Inorganic Chemistry: Wiley, New York, 959 pp.

    Google Scholar 

  • Coutourier, Y., Michard, G., and Sarazin, G. (1984) Constantes de formation des complexes hydroxidés de l’aluminium en solution aqueuse de 20 à 70°C: Geochim. Cosmochim. Acta 48, 649–659.

    Article  Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J. (1966) Introduction to the Rock-forming Minerals: Wiley, New York, 528 pp.

    Google Scholar 

  • Drever, J. I. (1976) Chemical and mineralogical studies, site 323: in Initial Reports of the Deep Sea Drilling Project, Vol. 35, C. D. Hollister et al., eds., U.S. Government Printing Office, Washington, D.C., 471–478.

    Google Scholar 

  • Drever, J. I. (1982) The Geochemistry of Natural Waters: Prentice-Hall, Englewood Cliffs, N.J., 388 pp.

    Google Scholar 

  • Fisher, J. R. and Barnes, H. L. (1972) The ion-product constant of water to 350°: J. Phys. Chem. 76, 90–99.

    Article  Google Scholar 

  • Gac, J. Y. (1979) Géochimie du bassin du Lac Tchad: Bilan de l’altération, de l’érosion et de la sédimentation: Doctoral thesis, Univ. Louis Pasteur, Strasbourg, France, 249 pp.

    Google Scholar 

  • Harvey, C. C. (1980) A study of the alteration products of acid volcanic rocks from northland, New Zealand: Ph.D. thesis, Indiana University, Bloomington, 322 pp.

    Google Scholar 

  • Hem, J. D. and Robertson, C. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution: U.S. Geol. Surv. Water-Supply Pap. 1827A, 55 pp.

  • Hendricks, S. B. (1937) The crystal structure of alunite and the jarosites: Amer. Mineral. 22, 773–784.

    Google Scholar 

  • de Jong, B. H. W. S., Schramm, C. M., and Parziale, V. E. (1983) Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions. IV. Aluminum coordination in glasses and aqueous solutions and comments on the aluminum avoidance principle: Geochim. Cosmochim. Acta, 47, 1223–1236.

    Article  Google Scholar 

  • Kastner, M. and Gieskes, J. M. (1976) Interstitial water profiles and sites of diagenetic reactions, leg 35, DSDP, Bellingshousen abyssal plain: Earth Plan. Sci. Lett. 33, 11–20.

    Article  Google Scholar 

  • Keller, W. D., Hanson, R. F., Huang, W. H., and Cervantes, A. (1971) Sequential active alteration of rhyolitic volcanic rock to endellite and precursor phase of it at a spring in Michoacán, Mexico: Clays & Clay Minerals 19, 121–127.

    Article  Google Scholar 

  • Komarneni, S., Fyfe, C. A., and Kennedy, G. J. (1985) Order-disorder in 1:1 type clay minerals by solid state 27A1 and 29Si magic-angle-spinning NMR spectroscopy: Clay Miner. 20, 327–334.

    Article  Google Scholar 

  • Lewis, G. N., Randall, M., Pitzer, K. S., and Brewer, L. (1961) Thermodynamics: McGraw-Hill, New York, 723 pp.

    Google Scholar 

  • May, H.M., Helmke, P.A., and Jackson, M.L. (1979) Gibb-site solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25°C: Geochim. Cosmochim. Acta 43, 861–868.

    Article  Google Scholar 

  • Merino, E. (1975) Diagenesis in Tertiary sandstones from Kettleman North Dome, California. II. Interstitial solutions: Distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy: Geochim. Cos-mochim. Acta 39, 1629–1645.

    Article  Google Scholar 

  • Merino, E. and Ransom, B. (1982) Free energies of formation of illite solid solutions and their compositional dependence: Clays & Clay Minerals 30, 29–39.

    Article  Google Scholar 

  • Newman, A. C. D. and Brown, G. (1987) The chemical constitution of clays: in Chemistry of Clays and Clay Minerals, A. C. D. Newman, ed., Mineralogical Society, London, 1–128.

    Google Scholar 

  • Parks, G. A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals: in Equilibrium Concepts in Natural Water Systems, W. Stumm, ed., Adv. Chem. Series 67, Amer. Chem. Soc., Washington, D.C., 121–160.

    Chapter  Google Scholar 

  • Paquet, H. (1969) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées: Mém. Sert. Carte Géol. Alsace Lorraine 30, 212 pp.

  • Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates. VI. Serpentine and kaolin morphology: Amer. Mineral. 48, 368–378.

    Google Scholar 

  • Smith, J. F. and Steele, I. M. (1984) Chemical substitution in silica polymorphs: N. Jb. Miner. Mh. H.3, 137–144.

    Google Scholar 

  • Stoessell, R. K. (1988) 25°C and 1 atm dissolution experiments of sepiolite and kerolite: Geochim. Cosmochim. Acta 52, 365–374.

    Article  Google Scholar 

  • Stoessell, R. K. and Hay, R. L. (1978) The geochemical origin of sepiolite and kerolite at Amboseli, Kenya: Contrib. Mineral. Petrol. 65, 255–267.

    Article  Google Scholar 

  • Tardy, Y., Cheverry, C, and Fritz, B. (1974) Néoformation d’une argile magnésienne dans les dépressions interdunaires du Lac Tchad. Application aux domaines de stabilité des phyllosilicates alumineux, magnésiens et ferrifères. CR. Acad. Sci. Paris 278 (Série D), 1999–2002.

    Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, Amsterdam, 213 pp.

    Google Scholar 

  • Webb, J. A. and Finlayson, B. L. (1987) Incorporation of AL Mg, and water in opal-A: Evidence from speleothems: Amer. Mineral. 72, 1204–1210.

    Google Scholar 

  • Weston, R.E. and Schwarz, H.A. (1972) Chemical Kinetics: Prentice-Hall, Englewood Cliffs, New Jersey, 274 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merino, E., Harvey, C. & Murray, H.H. Aqueous-Chemical Control of the Tetrahedral-Aluminum Content Of Quartz, Halloysite, and other Low-Temperature Silicates. Clays Clay Miner. 37, 135–142 (1989). https://doi.org/10.1346/CCMN.1989.0370204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1989.0370204

Key Words

Navigation