Skip to main content
Log in

Shale Diagenesis in the Bergen High Area, North Sea

  • Published:
Clays and Clay Minerals

Abstract

Illite diagenesis in Tertiary and Mesozoic shales in the Bergen High area, northern North Sea, was studied using mineralogic, isotopic, and computerized thermal modeling techniques. The Tertiary shales are dominated by smectite, with lesser amounts of illite, kaolinite, and chlorite. At present burial temperatures of >70°C smectite is absent, and the shales contain abundant lath-shaped illite which yields a mixed-layer illite/smectite (I/S) X-ray powder diffraction (XRD) pattern. Transmission electron microscopy (TEM) indicates that the illite laths increase in abundance and thickness with increasing depth; XRD patterns indicate a progressive increase in the illite component of the I/S. The deepest samples were found to contain long-range ordered (R=3) I/S, which showed platy particle morphology with the TEM. K-Ar ages of most of the <0.1-μm-size illite separates imply that illitization was a relatively brief event affecting a thick sequence of sediments during late Cretaceous to early Paleocene time (65–87 Ma); however, measured ages were affected by trace levels of detrital Ar contamination and do not represent the true age of diagenesis.

Several methods of quantifying Ar contamination were used to correct measured ages to obtain a reasonable estimate of the true age of diagenesis. The corrected ages are imprecise due to uncertainties in quantifying the levels of sample contamination, but generally suggest a Paleogene (38–66 Ma) period of illitization. In contrast, simple kinetic models of smectite-illitization suggest much younger ages of diagenesis (0–40 Ma at the Veslefrikk field; 0–60 Ma at the Huldra field). The timing of the diagenesis and the morphologic aspects of the authigenic illite suggest that illite precipitated before late Tertiary compaction and resulted in a decrease in fluid permeability. Low trapping efficiency of early Tertiary sediments, vertical escape of warm fluid from the Brent sandstone, and high heat flow may have promoted illite diagenesis in the shales prior to deep late-Tertiary burial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. A. and Peacor, D. R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition: Clays & Clay Minerals 34, 165–179.

    Article  Google Scholar 

  • Aronson, J. L. and Lee, M. (1986) K/Ar systematics of bentonite and shale in a contact metamorphic zone, Cerrillos, New Mexico: Clays & Clay Minerals 34, 483–487.

    Article  Google Scholar 

  • Aronson, J. L. and Hower, J. (1976) Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence: Geol. Soc. Amer. Bull. 68, 673–683.

    Google Scholar 

  • Bethke, C. M. and Altaner, S. P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law: Clays & Clay Minerals 34, 136–145.

    Article  Google Scholar 

  • Bethke, C. M., Vergo, N., and Altaner, S. P. (1986) Pathways of smectite illitization: Clays & Clay Minerals 34, 125–135.

    Article  Google Scholar 

  • Blanche, J. B. and Whitaker, J. H. McD. (1978) Diagenesis of part of the Brent Sand Formation (Middle Jurassic) of the northern North Sea basin: J. Geol. Soc. London 135, 73–82.

    Article  Google Scholar 

  • Clauer, N. (1981) Stronium and argon isotopes in naturally weathered biotites, muscovites, and feldspars: Chem. Geol. 31, 325–334.

    Article  Google Scholar 

  • Dahl, B. and Speers, G. C. (1985) Organic geochemistry of the Oseberg Field (I): in Petroleum Geochemistry in Exploration of the Norwegian Shelf, A. G. Dore, S. S. Eggen, P. C. Home, R. Marne, and B. M. Thomas, eds., Norwegian Petroleum Society, Graham & Trotman Ltd., London, 185–195.

    Chapter  Google Scholar 

  • Dickson, J. A. D. (1965) A modified staining technique for carbonates in thin section: Nature 219, 587.

    Article  Google Scholar 

  • Dypvik, H. (1983) Clay mineral transformations in Tertiary and Mesozoic sediments from North Sea: Amer. Assoc. Petrol. Geol. Bull. 67, 160–165.

    Google Scholar 

  • Eberl, D. (1978) Reaction series for dioctahedral smectites: Clays & Clay Minerals 26, 327–340.

    Article  Google Scholar 

  • Eberl, D. and Hower, J. (1976) Kinetics of illite formation: Geol. Soc. Amer. Bull. 87, 1326–1330.

    Article  Google Scholar 

  • Elliott, W. C. and Aronson, J. L. (1987) Alleghanian episode of K-bentonite illitization in the southern Appalachian basin: Geology 15, 735–739.

    Article  Google Scholar 

  • Elliott, W. C., Aronson, J. L., and Gautier, D. L. (1986) Bentonite illitization and thermal history, Denver basin, U.S.A.: Terra Cognita 6, 108.

  • Falvey, D. A. and Middleton, M. F. (1981) Passive continental margins: Evidence for a pre-breakup deep crustal metamorphic subsidence mechanism: Oceanologica Acta 4, 103–114.

    Google Scholar 

  • Field, J. D. (1985) Organic geochemistry in exploration of the northern North Sea: in Petroleum Geochemistry in Exploration of the Norwegian Shelf, A. G. Dore, S. S. Eggen, P. C. Home, R. Marne, and B. M. Thomas, eds., Norwegian Petroleum Society, Graham & Trotman Ltd., London, 39–57.

    Chapter  Google Scholar 

  • Friedman, G. M. (1971) Staining: in Procedures in Sedimentary Petrology, R. E. Carver, ed., Wiley, New York, 511–531.

    Google Scholar 

  • Glasmann, J. R. (1987a) Comments on “The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland”e: Contrit. Mineral. Petrol. 96, 72–74.

    Article  Google Scholar 

  • Glasmann, J. R. (1987b) Argon diffusion in illite during diagenesis: How good is the K/Ar clock? in Prog. Abstracts, 24th Annual Meeting, The Clay Minerals Society, Socorro, New Mexico, p. 60.

    Google Scholar 

  • Glasmann, J. R., Clark, R. A., Larter, S., Briedis, N. A., and Lundegard, P. D. (1989a) Diagenesis in the Bergen High area, North Sea: Relationships to hydrocarbon maturation and fluid flow, Brent Sandstone. Amer. Assoc. Petrol. Geol. (in press).

    Google Scholar 

  • Glasmann, J. R., Lundegard, P. D., Clark, R. A., Penny, B. K., and Collins, I. D. (1989b) Geochemical evidence for the history of diagenesis and fluid migration: Brent Sandstone, Heather Field, North Sea: Clay Miner. 24, (in press).

    Article  Google Scholar 

  • Glasmann, J. R. and Simonson, G. H. (1985) Alteration of basalt in soils of western Oregon: Soil Sci. Soc. Amer. J. 49, 262–272.

    Article  Google Scholar 

  • Goff, J. C. (1983) Hydrocarbon generation and migration from Jurassic source rocks in the E. Shetland basin and Viking graben of the northern North Sea: J. Geol. Soc. London 140, 445–474.

    Article  Google Scholar 

  • Hamilton, P. J., Fallick, A. E., Macintyre, R. M., and Elliott, S. (1987) Isotopic tracing of the provenance and diagenesis of Lower Brent Group sands, North Sea: in Petroleum Geology of Northwest Europe, J. Brooks and K. Glennie, eds., Graham & Trotman Ltd., London, 939–949.

    Google Scholar 

  • Hancock, N. J. and Taylor, A. M. (1978) Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation: J. Geol. Soc. London 135, 69–72.

    Article  Google Scholar 

  • Haszeldine, R. S., Samson, I. M., and Cornford, C. (1984) Quartz diagenesis and convective fluid movement: Beatrice Oilfield, UK North Sea: Clay Miner. 19, 391–402.

    Article  Google Scholar 

  • Hoffman, J. and Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Applications to the thrust faulted disturbed belt of Montana, U.S.A.: in Aspects of Diagenesis, P. A. Scholle and R. P. Schluger, eds., Soc. Econ. Paleon. Mineral. Spec. Pub. 26, 55–79.

    Article  Google Scholar 

  • Hoffman, J., Hower, J., and Aronson, J. L. (1976) Radiometric dating of time of thrusting in the disturbed belt of Montana: Geology 4, 16–20.

    Article  Google Scholar 

  • Hower, J., Hurley, P. M., Pinson, W. H., and Fairbairn, H. W. (1963) The dependence of K-Ar age on the mineralogy of various particle size ranges in a shale: Geochim. Cos-mochim. Acta 27, 405–410.

    Article  Google Scholar 

  • Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Fried-richsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, H., and Schwander, H. (1986) The evolution of illite to mus-covite: Mineralogical and isotopic data from the Glarus Alps, Switzerland: Contrib. Mineral. Petrol. 92, 157–180.

    Article  Google Scholar 

  • Inoue, A., Kohyama, N., Kitagawa, R., and Watanabe, T. (1987) Chemical and morphological evidence for the conversion of smectite to illite: Clays & Clay Minerals 35, 111–120.

    Article  Google Scholar 

  • Jennings, S. and Thompson, G. R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California: J. Sed. Petrol. 56, 89–98.

    Google Scholar 

  • Jourdan, A., Thomas, M., Brevart, O., Robson, P., Sommer, F., and Sullivan, M. (1987) Diagenesis as the control of the Brent Sandstone reservoir properties in the greater Al-wyn area (East Shetland basin): in Petroleum Geology of Northwest Europe, J. Brooks and K. Glennie, eds., Graham & Trotman Ltd., London, 951–961.

    Google Scholar 

  • Lee, M. (1984) Diagenesis of the Permian Rotliegendes Sandstone, North Sea: K/Ar, 180/160, and petrographic evidence: Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio, 346 pp.

    Google Scholar 

  • Liewig, N., Clauer, N., and Sommer, F. (1987) Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea: Amer. Assoc. Petrol. Geol. Bull. 71, 1467–1474.

    Google Scholar 

  • McHardy, W.J., Wilson, M.J., and Tait, J.M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field: Clay Miner. 17, 23–39.

    Article  Google Scholar 

  • McKenzie, D. (1978) Some remarks on the development of sedimentary basins: Earth Planetary Sci. Letters, 40, 25–32.

    Article  Google Scholar 

  • Middleton, M. F. and Falvey, D. A. (1983) Maturation modeling in Otway Basin, Australia: Amer. Assoc. Petrol. Geol. Bull. 67, 271–279.

    Google Scholar 

  • Morton, J. P. (1985) Rb-Sr evidence for punctuated illite/smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast: Geol. Soc. Amer. Bull. 96, 114–122.

    Article  Google Scholar 

  • Nadeau, P. H. (1985) The physical dimensions of fundamental clay particles: Clay Miner. 20, 499–514.

    Article  Google Scholar 

  • Nadeau, P. H. and Bain, D. C. (1986) Composition of some smectites and diagenetic illitic clays and implications for their origin: Clays & Clay Minerals 34, 455–464.

    Article  Google Scholar 

  • Nadeau, P. H., Wilson, M. J., McHardy, W. J., and Tait, J. M. (1984) Interparticle diffraction: A new concept for interstratified clays: Clay Miner. 19, 757–769.

    Article  Google Scholar 

  • Pearson, M. J., Watkins, D., and Small, J. S. (1982) Clay diagenesis and organic maturation in northern North Sea sediments: in Proc. Int. Clay Conf, Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 665–675.

    Google Scholar 

  • Perry, E. A., Jr. (1974) Diagenesis and the K/Ar dating of shales and clay minerals: Geol. Soc. Amer. Bull. 85, 827–830.

    Article  Google Scholar 

  • Ramseyer, K. and Boles, J. R. (1986) Mixed-layer illite/ smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California: Clays & Clay Minerals 34, 115–124.

    Article  Google Scholar 

  • Reynolds, R. C. (1980) Interstratified clay minerals: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–304.

    Google Scholar 

  • Ritter, U. (1985) The influence of time and temperature on vitrinite reflectance: Organic Geochem. 6, 473–480.

    Article  Google Scholar 

  • Royden, L., Sclater, J. G., and Von Herzen, R. P. (1980) Continental margin subsidence and heat flow: Important parameters in formation of petroleum hydrocarbons: A mer. Assoc. Petrol. Geol. Bull. 64, 173–187.

    Google Scholar 

  • Sclater, J. G. and Christie, P. A. F. (1980) Continental stretching: An explanation of the post-Mid-Cretaceous subsidence of the Central North Sea basin: J. Geophys. Research 85, 3711–3739.

    Article  Google Scholar 

  • Srodon, J., Morgan, D. J., Eslinger, E. V., Eberl, D., and Karlinger, M. R. (1986) Chemistry of illite/smectite and end-member illite: Clays & Clay Minerals 34, 369–378.

    Article  Google Scholar 

  • Steiger, R. H. and Jager, E. (1977) Subcommission on geo-chronology: Convention on the use of decay constants in geo- and cosmochronology: Earth Planetary Sci. Letters 36, 359–362.

    Article  Google Scholar 

  • Theisen, A. A. and Harward, M. E. (1962) A paste method for preparation of slides for clay mineral identification by X-ray diffraction: Soil Sci. Soc. Amer. Proc. 26, 90–91.

    Google Scholar 

  • Thomas, B. M., Moller-Pedersen, P., Whitaker, M. F., and Shaw, N. D. (1985) Organic facies and hydrocarbon distributions in the Norwegian North Sea: in Petroleum Geochemistry in Exploration of the Norwegian Shelf A. G. Dore, S. S. Eggen, P. C. Home, R. Marne, and B. M. Thomas, eds., Norwegian Petroleum Society, Graham & Trotman Ltds., London, 3–26.

    Chapter  Google Scholar 

  • Thomas, M. (1986) Diagenetic sequences and K/Ar dating in Jurassic sandstones, central Viking graben: Effects on reservoir properties: Clay Miner. 21, 695–710.

    Article  Google Scholar 

  • Velde, B., Suzuki, T., and Nicot, E. (1986) Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples: Clays & Clay Minerals 34, 435–441.

    Article  Google Scholar 

  • Waples, D. W. (1980) Time and temperature in petroleum formation: Application of Lopatin’s method to petroleum exploration: Amer. Assoc. Petrol. Geol. Bull. 64, 916–926.

    Google Scholar 

  • Yau, Y. C., Peacor, D. R., and McDowell, S. D. (1987a) Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscope study: J. Sed. Petrol. 57, 335–342.

    Google Scholar 

  • Yau, Y. C., Peacor, D. R., Essene, E. J., Lee, J. H., Kuo, L. C., and Cosca, M. A. (1987b) Hydrothermal treatment of smectite, illite, and basalt to 460°C: Comparison of natural with hydrothermally formed clay minerals: Clays & Clay Minerals 35, 241–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasmann, J.R., Larter, S., Briedis, N.A. et al. Shale Diagenesis in the Bergen High Area, North Sea. Clays Clay Miner. 37, 97–112 (1989). https://doi.org/10.1346/CCMN.1989.0370201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1989.0370201

Key Words

Navigation