Skip to main content
Log in

Weathering of Iron-Bearing Minerals in Soils and Saprolite on the North Carolina Blue Ridge Front: II. Clay Mineralogy

  • Published:
Clays and Clay Minerals

Abstract

The mineralogy of the clay fraction was studied for soils and saprolite on two Blue Ridge Front mountain slopes. The clay fraction contained the weathering products of primary minerals in the mica gneiss and schist parent rocks. Gibbsite is most abundant in the saprolite and residual soil horizons, where only chemical weathering has been operable. In colluvial soil horizons, where both physical and chemical weathering have occurred, the clay fraction consists largely of comminuted primary phyllosilicates —muscovite, chlorite, and possibly biotite—and their weathering products: vermiculite, interstratified biotite/vermiculite (B/V), and kaolinite. The clay-size chlorite contains Fe2+ as indicated by Mössbauer spectroscopy, and is more resistant to weathering than biotite. The vermiculite and B/V, both weathering products of biotite, contain Fe3+. Vermiculite in colluvial soils and, especially, surface horizons is weakly hydroxy-interlayered. The kaolinite in the clay fraction resulted at least partly from the comminution of kaolinized biotite in coarser fractions.

The hematite content ranged from 0 to 8% of the clay fraction and strongly correlates (r =.95) with dry clay redness, as measured by the redness rating: RR = (10 - YR hue) × (chroma) ÷ (value). The hematite is largely a product of the weathering of almandine; thus, the soil redness is dependent on the amount of almandine in the parent materials and its degree of weathering in the soils. Goethite (13–22% of the clay fraction) imparts a yellow-brown hue to soils derived from almandine-free parent rocks. The release of Fe in relatively low concentrations during the weathering of Fe-bearing primary minerals, particularly biotite, appears to have promoted the formation of goethite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, B. L. and Fanning, D. S. (1983) Composition and soil genesis: in Pedogenesis and Soil Taxonomy. I. Concepts and Interactions, L. P. Wilding, N. E. Smeck, and G. F. Hall, eds., Elsevier, New York, 141–192.

    Chapter  Google Scholar 

  • Amarasiriwardena, D. D., DeGrave, E., Bowen, L. H., and Weed, S. B. (1986) Quantitative determination of aluminum-substituted goethite-hematite mixtures by Möss-bauer spectroscopy: Clays & Clay Minerals 34, 250–256.

    Article  Google Scholar 

  • Anderson, J. U. (1963) An improved pretreatment for min-eralogical analysis of samples containing organic matter: in Clays and Clay Minerals, Proc. 10th Natl. Conf., Austin, Texas, 1961, A. Swineford and P. C. Franks, eds., Pergamon Press, New York, 380–388.

    Google Scholar 

  • Bain, D. C. (1977) The weathering of chlorite minerals in some Scottish soils: J. Soil Sci. 28, 144–164.

    Article  Google Scholar 

  • Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47–60.

    Article  Google Scholar 

  • Barnhisel, R. I. (1977) Chlorites and hydroxy interlayered vermiculite and smectite: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 331–356.

    Google Scholar 

  • Barnhisel, R. I., ed. (1978) Analyses of clay, silt and sand fractions of selected soils from southeastern United States: Univ. Kentucky Agric. Exp. Sta., Southern Cooperative Bull. 219, 90 pp.

  • Bigham, J. M., Golden, D. C., Buoi, S. W., Weed, S. B., and Bowen, L. H. (1978) Iron oxide mineralogy of well-drained Ultisols and Oxisols: II. Influence on color, surface area, and phosphate retention: Soil Sci. Soc. Amer. J. 42, 825–830.

    Article  Google Scholar 

  • Bowen, L. H. and Weed, S. B. (1984) Mössbauer spectroscopy of soils and sediments: in Chemical Mössbauer Spectroscopy, R. H. Herber, ed., Plenum, New York, 217–242.

    Chapter  Google Scholar 

  • Calvert, C. S., Buoi, S. W., and Weed, S. B. (1980) Min-eralogical characteristics and transformations of a rock-saprolite-soil profile in the North Carolina Piedmont: II. Feldspar alteration products—Their transformations through the profile: Soil Sci. Soc. Amer. J. 44, 1104–1112.

    Article  Google Scholar 

  • Churchman, G. J., Whitton, J. S., Claridge, G. G. C., and Theng, B. K. G. (1984) Intercalation method using form-amide for differentiating halloysite from kaolinite: Clays & Clay Minerals 32, 241–248.

    Article  Google Scholar 

  • Coffin, D. E. (1963) A method for the determination of free iron in soils and clays: Can. J. Soil Sci. 43, 7–17.

    Article  Google Scholar 

  • DeGrave, E., Bowen, L. H., and Weed, S. B. (1982) Mössbauer study of aluminum-substituted hematites: J. Mag. Mag. Mat. 27, 98–108.

    Article  Google Scholar 

  • Fanning, D. S. and Keramidas, V. Z. (1977) Micas: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 195–258.

    Google Scholar 

  • Golden, D. C., Bowen, L. H., Weed, S. B., and Bigham, J. M. (1979) Mössbauer studies of synthetic and soil-occurring aluminum substituted goethite: Soil Sci. Soc. Amer. J. 43, 802–808.

    Article  Google Scholar 

  • Goodman, B. A. (1980) Mössbauer spectroscopy: in Advanced Chemical Methods for Soil and Clay Minerals Research, J. W. Stucki and W. L. Banawart, eds., D. Reidel, Dordrecht, 1–92.

    Google Scholar 

  • Goodman, B. A. and Wilson, M. J. (1973) A study of the weathering of a biotite using the Mössbauer effect: Mineral. Mag. 39, 448–454.

    Article  Google Scholar 

  • Graham, R. C. (1986) Geomorphology, mineral weathering, and pedology in an area of the Blue Ridge Front, North Carolina: Ph.D. dissertation, North Carolina State University, Raleigh, North Carolina, 196 pp.

    Google Scholar 

  • Graham, R. C., Weed, S. B., Bowen, L. H., and Buoi, S. W. (1989) Weathering of iron-bearing minerals in soils and saprolite on the North Carolina Blue Ridge Front: I. Sand-size primary minerals: Clays & Clay Minerals 37, 19–28.

    Article  Google Scholar 

  • Harris, W.G., Zelazny, L. W., and Bloss, F.D. (1985) Biotite kaolinization in Virginia Piedmont soils: II. Zonation in single grains: Soil Sci. Soc. Amer. J. 49, 1297–1302.

    Article  Google Scholar 

  • Herbillon, A. J. and Makumbi, M. H. (1975) Weathering of chlorite in a soil derived from a chlorite-schist under humid tropical conditions: Geoderma 13, 89–104.

    Article  Google Scholar 

  • Jackson, M. L. (1979) Soil Chemical Analysis—Advanced Course: 2nd ed., 11th printing, Publ, by author, Madison, Wisconsin, 895 pp.

    Google Scholar 

  • Keller, W. D. (1964) The origin of high alumina clay minerals. A review: in Clays and Clay Minerals, Proc. 12th Natl. Conf, Atlanta, Georgia, 1963, W. F. Bradley, ed., Pergamon Press, New York, 129–156.

    Google Scholar 

  • Kündig, W., Bommel, H., Constabaris, G., and Lindquist, R. H. (1966) Some properties of supported small a-Fe2O3 particles determined with the Mössbauer effect: Phys. Rev. 142, 327–333.

    Article  Google Scholar 

  • Losche, C. K., McCracken, R. J., and Davey, C. B. (1970) Soils of steeply sloping landscapes in the southern Appalachian Mountains: Soil Sci. Soc. Amer. Proc. 34, 473–478.

    Article  Google Scholar 

  • Rabenhorst, M. C., Fanning, D. S., and Foss, J. E. (1982) Regularly interstratififed chlorite/vermiculite in soils over meta-igneous mafic rocks in Maryland: Clays & Clay Minerals 30, 156–158.

    Article  Google Scholar 

  • Rebertus, R. A. and Buoi, S. W. (1985) Iron distribution in a developmental sequence of soils from mica gneiss and schist: Soil Sci. Soc. Amer. J. 49, 713–720.

    Article  Google Scholar 

  • Rebertus, R. A., Weed, S. B., and Buoi, S. W. (1986) Transformations of biotite to kaolinite during saprolite-soil weathering: Soil Sci. Soc. Amer. J. 50, 810–819.

    Article  Google Scholar 

  • Rice, T. J., Jr., Buoi, S. W., and Weed, S. B. (1985) Soil-saprolite profiles derived from mafic rocks in the North Carolina Piedmont: I. Chemical, morphological and min-eralogical characteristics and transformations: Soil Sci. Soc. Amer. J. 49, 171–178.

    Article  Google Scholar 

  • Sawhney, B. L. (1977) Interstratification in layer silicates: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 405–434.

    Google Scholar 

  • Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals: in Advances in Soil Science, Vol. 1, B. A. Stewart, ed., Springer-Verlag, New York, 171–200.

    Google Scholar 

  • Schwertmann, U. and Taylor, R. M. (1977) Iron oxides: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 145–180.

    Google Scholar 

  • Theisen, A. A. and Harward, M. E. (1962) A paste method for preparation of slides for clay mineral identification by X-ray diffraction: Soil Sci. Soc. Amer. Proc. 26, 90–91.

    Google Scholar 

  • Torrent, J., Schwertmann, U., Fechter, H., and Alferez, F. (1983) Quantitative relationships between soil color and hematite content: Soil Sci. 136, 354–358.

    Article  Google Scholar 

  • Torrent, J., Schwertmann, U., and Schulze, D. G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain: Geoderma 23, 191–208.

    Article  Google Scholar 

  • Wilson, M. J. (1967) The clay mineralogy of some soils derived from a biotite-rich quartz-gabbro in the Strathdon area, Aberdeenshire: Clay Miner. 7, 91–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, R.C., Weed, S.B., Bowen, L.H. et al. Weathering of Iron-Bearing Minerals in Soils and Saprolite on the North Carolina Blue Ridge Front: II. Clay Mineralogy. Clays Clay Miner. 37, 29–40 (1989). https://doi.org/10.1346/CCMN.1989.0370104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1989.0370104

Key Words

Navigation