Skip to main content
Log in

Hydrothermal and Supergene Alterations in the Granitic Cupola of Montebras, Creuse, France

  • Published:
Clays and Clay Minerals

Abstract

A mineralogical investigation of the highly kaolinized Chanon granite and albite-muscovite granite of the Montebras cupola, Creuse, France, indicates that the magmatic stage was followed by two hydrothermal events related to successive cooling stages and by late weathering. The hydrothermal alteration was accompanied first by greisen formation and then a broad kaolinization process, which pervasively affected the granitic bodies. In the Chanon granite, the greisens are characterized by a trilithionite-lepidolite-quartz-tourmaline assemblage and are surrounded by concentric alteration zones. From the greisen to the fresh granite three zones were distinguished: (1) a zone characterized by secondary brown biotite (<400°C), (2) a zone characterized by secondary green biotite and phengite (300–350°C), and (3) a zone characterized by the presence of corrensite (180°–200°C) located around greisen veinlets. In the albite-muscovite granite the greisen is composed of lepidolite and quartz. This mineral assemblage was followed locally by Li-tosudite crystallization. During the second hydrothermal event (<100°C) an assemblage of kaolinite, mixed-layer illite/smectite (I/S), and illite formed pervasively and in crack fillings; the smectite layers of the US are potassic. Weathering produced Fe oxide and kaolinite. This kind of alteration developed mainly in the overlying Chanon granite. Here, Ca-Mg-montmorillonite formed in subvertical cracks, which transect the two granitic bodies, and hydrothermal I/S was obliterated by Ca-Mg-montmorillonite.

The hydrothermal parageneses were apparently controlled by magmatic albitization and the bulk chemistry of the two granitic bodies. The albitization, the formation of large micaceous greisens, and the successive recrystallizations of biotite (which was the most susceptible phase to alteration) provide information on the temperature range and chemical mobility during successive cooling stages. Si and Mg activities increased as the temperature of alteration decreased, and secondary Mg-biotite and Mg-phengite crystallized as long as the K activity was sufficient. The crystallizations of secondary biotite and phengite were followed by the crystallization of I/S during stages of low K activity. Secondary hydrothermal phases in the Chanon granite contain substantial Fe and Mg. Secondary hydrothermal phases in the albite-muscovite granite contain only small amounts of Fe and Mg, suggesting a lack of chemical exchange between the enclosing Chanon granite and the albite-muscovite granite, which is depleted in Fe-Mg-rich primary phases, such as biotite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, G. (1969) Les coupoles granitiques de Montebras et d’Echassières (Massif Central français) et la genèse de leur minéralisation étain-lithium-tungstène-bérylium: Mém. BRGM 46, 354 pp.

  • Beane, R. E. (1974) Biotite stability in the porphyry copper environment: Econ. Geol. 69, 241–256.

    Article  Google Scholar 

  • Beaufort, D. (1981) Etude pétrographique des altérations hydrothermales superposées dans le porphyre cuprifère de Sibert (Rhône, France). Influence des microsystèmes géochimiques dans la différenciation des micas blancs et des phases trioctaédriques: Thèse 3e cycle, Univ. Poitiers, Poitiers, France, 147 pp.

  • Beaufort, D. (1984) Aninterstratified illite/smectitemineral from the hydrothermal deposit in Sibert, Rhône, France: Clays & Clay Minerals 32, 154–156.

    Article  Google Scholar 

  • Beaufort, D. and Meunier, A. (1983a) A petrographic study of phyllic alteration superimposed on potassic alteration: The Sibert porphyry deposit (Rhône, France): Econ. Geol. 78, 1514–1527.

    Article  Google Scholar 

  • Beaufort, D. and Meunier, A. (1983b) Petrographic characterization of an argillic hydrothermal alteration containing illite, K-rectorite, K-beidellite, kaolinite and carbonates in a cupromolybdenic porphyry at Sibert (Rhône, France): Bull. Minér. 106, 533–551.

    Google Scholar 

  • Beaufort, D., Dudoignon, P., Proust, D., Parneix, J. C., and Meunier, A. (1983) Microdrilling in thin section: A useful method for identification of clay minerals in situ: Clay Miner. 18, 219–222.

    Article  Google Scholar 

  • Brindley, G. M. and Brown, G., eds. (1980) Crystal Structures of Clay Minerals and their X-Ray Identification: Min-eralogical Society, London, 495 pp.

    Google Scholar 

  • Cathelineau, M. (1982) Les gisements d’uranium liés spatialement aux leucogranites Sud-armoricains et leur encaissant métamorphique: Relation et interaction entre les minéralisations et divers contextes géologiques et structuraux: Sci. de la Terre 42, 375 pp.

  • Charoy, B. (1975) Ploëmeur kaolin deposit: An example of hydrothermal alteration: Petrology I, 4, 253–266.

    Google Scholar 

  • Charoy, B. (1979) Définition et importance des phénomènes deutériques et des fluides associés dans les granites. Conséquences métallogéniques: Mém. BRGM 37, 364 pp.

  • Creach, M., Meunier, A., and Beaufort, D. (1986) Tosudite occurrence in the kaolinized granitic cupola of Montebras (Creuse, France): Clay Miner. 21, 225–230.

    Article  Google Scholar 

  • Dudoignon, P. (1983) Altérations hydrothermales et supergènes des granites. Etude des gisements de Montebras (Creuse), de Sourches deux-Sèvres) et des arènes granitiques (Massif de Parthenay): Thèse 3e cycle Univ. Poitiers, Poitiers, France, 120 pp.

  • Eberl, D. and Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed layer clay: Clays & Clay Minerals 25, 215–227.

    Article  Google Scholar 

  • Exley, C. S. (1976) Observations on the formation of kaolinite in the St-Austell granite, Cornwall: Clay Miner. 11, 51–63.

    Article  Google Scholar 

  • Foster, M. D. (1960) Interpretation of the compositions of lithium micas: U.S. Geol. Surv. Prof. Pap. 354, 115–146.

    Google Scholar 

  • Fournier, R. O. (1967) The porphyry copper deposit exposed in the Liberty open pit-mine near Ely, Nevada, Part. II. The formation of hydrothermal alteration zones: Econ. Geol. 62, 207–227.

    Article  Google Scholar 

  • Ichikawa, A. and Shimoda, S. (1976) Tosudite from the Hokuno mine, Hokuno, Gifu Prefecture, Japan: Clays & Clay Minerals 24, 142–148.

    Article  Google Scholar 

  • Jacobs, D. C. and Parry, W. T. (1976) A comparison of the geochemistry of biotite from some Basin and Range stocks: Econ. Geol. 71, 1029–1035.

    Article  Google Scholar 

  • Jacobs, D. C. and Parry, W. T. (1979) Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico: Econ. Geol. 74, 860–887.

    Article  Google Scholar 

  • Konta, J. (1969) Comparison of the proofs of hydrothermal and supergene kaolinization in two areas of Europe: in Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1, L. Heller, ed., Israel Univ. Press, Jerusalem, 281–290.

    Google Scholar 

  • Kükne, R., Wasternack, J., and Schulze, C. (1972) Post-magmatische Metasomatose Evokontakt der Jüngeren post kinematischen Granite des Erzgebirges: Geologie Dtsch. 21, 494–520.

    Google Scholar 

  • MacDowell, D. M. C. and Elders, W. A. (1980) Authigenetic layer silicate in borehole Elmore 1, Salton Sea geothermal field, California, U.S.A.: Contrib. Mineral. Petrol. 74, 293–310.

    Article  Google Scholar 

  • Maksimović, Z. and Brindley, G. W. (1980) Hydrothermal alteration of a serpentine near Takovo, Yugoslavia, to chromium bearing illite/smectite, kaolinite, tosudite, and hal-loysite: Clays & Clay Minerals 28, 295–302.

    Article  Google Scholar 

  • Matsuda, T. and Henmi, K. (1973) Hydrothermal behavior of the interstratified mineral from the mine of Ebara, Hyago Prefecture, Japan (an example of changes from randomly interstratified clay mineral to regular one): J. Clay Science Soc. Japan 13, 87–94.

    Google Scholar 

  • Meunier, A. (1980) Les mécanismes de l’altération des granites et le rôles des microsystèmes. Etude des arènes du massif granitique de Parthenay (Deux-Sèvres): Mém. Soc. Géol. Er. 140, 80 pp.

  • Meunier, A. (1982) Superposition de deux altérations hydrothermales dans la syénite monzonitique du Bac-de Montmeyre (sondage INAG 1, Massif Central, France): Bull. Minéral. 105, 386–394.

    Google Scholar 

  • Meunier, A. and Velde, B. (1982) Phengitization, sericitization and potassium beidellite in a hydrothermally altered granite: Clay Miner. 17, 285–299.

    Article  Google Scholar 

  • Monier, G. (1985) Cristallochimie des micas des leucogranites. Nouvelles données expérimentales et applications pé-trologiques: Thèse Doctorat ès sciences, Univ. Orléans, Orléans, France, 299 pp.

  • Munoz, J. L. (1968) Physical properties of synthetic lepid-olites: Amer. Mineral. 56, 1490–1512.

    Google Scholar 

  • Munoz, J. L. (1971) Hydrothermal stability relations of synthetic lepidolite: Amer. Mineral. 56, 2069–2087.

    Google Scholar 

  • Nicolas, J. and Rosen, A. (1966) Le massif des Colettes (Allier) et ses minéralisations: Bull. Soc. Fran. Mineral. Crist. 7, 126–128.

    Google Scholar 

  • Nielsen, R. L. (1968) Hypogene texture and mineral zoning in a copper-bearing granodiorite porphyry stock, Santa Rita, New Mexico: Econ. Geol. 63, 37–50.

    Article  Google Scholar 

  • Nishiyama, T., Shimoda, S., Shimosaka, K., and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337–342.

    Article  Google Scholar 

  • Reynolds, R. C. (1980) Interstratified clay minerals: in Crystal Structure of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Reynolds, R. C. and Hower, J. (1970) The nature of interlaying in mixed-layer illite-montmorillonite: Clay & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Rieder, M. (1971) Stability and physical properties of synthetic lithium-iron micas: Amer. Mineral. 56, 256–280.

    Google Scholar 

  • Rieder, M., Huka, M., Kucerova, D., Minarik, L., Obermajor, J., and Povondra, P. (1970) Chemical composition and physical properties of lithium-iron micas from the Krusne Hory Mts. (Erzgebirge): Contrib. Mineral. Petrol. 27, 131–158.

    Article  Google Scholar 

  • Robert, J. L. and Volfinger, M. (1979) Etude expérimentale de lépidolites trioctaédriques hydroxylées: Bull. Minéral. 102, 21–25.

    Article  Google Scholar 

  • Shimoda, S. (1975) X-Ray and I.R. studies of sudoite and tosudite: Contrib. Clays Min. in Honor Prof. Tushio Sudo, 92–96.

  • Sudo, T. and Shimoda, S. (1978) Clays and Clay Minerals of Japan: Elsevier, Amsterdam, 325 pp.

    Google Scholar 

  • Velde, B. (1977) Clays and Clay Minerals in Natural and Synthetic Systems: Elsevier, Amsterdam, 218 pp.

    Google Scholar 

  • Velde, B. (1984) Electron microprobe analysis of clay minerals: Clay Miner. 19, 243–247.

    Article  Google Scholar 

  • Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence: Elsevier, Amsterdam, 427 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudoignon, P., Beaufort, D. & Meunier, A. Hydrothermal and Supergene Alterations in the Granitic Cupola of Montebras, Creuse, France. Clays Clay Miner. 36, 505–520 (1988). https://doi.org/10.1346/CCMN.1988.0360604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1988.0360604

Key Words

Navigation