Skip to main content
Log in

Mössbauer Spectroscopic Identification of Iron Oxides in Nontronite From Hohen Hagen, Federal Republic of Germany

  • Published:
Clays and Clay Minerals

Abstract

Iron impurities in the Hohen Hagen nontronite (NG-1) were identified as maghemite and goethite. The phase identified as maghemite was magnetically ordered at both room temperature and 87 K, with hyperfine magnetic fields of 48.6 and 50.7 tesla, respectively. Due to the magnetic properties of this phase, it was easily separated from aqueous dispersions of the clay using a hand magnet. X-ray powder diffraction analysis revealed maghemite, quartz, and phyllosilicate in the magnetically separated phase. The impurity identified as goethite remained in the non-magnetic <2-μm fraction of the clay, displayed magnetic order only at 87 K (47.44 tesla hyperfine field), and accounted for about 8% of the total area of the Mössbauer spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ericsson, T. and Wäppling, R. (1976) Texture effects in 3/2-1/2 Mössbauer spectra: J. Phys., Collogue C6, Supplement 12 37, 719–723.

    Google Scholar 

  • Golden, D. C., Bowen, L. H., Weed, S. B., and Bigham, J. M. (1979) Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites: Soil Sci. Soc. Amer. J. 43, 802–808.

    Article  Google Scholar 

  • Goodman, B. A., Russell, J. D., Fraser, A. R., and Woodhams, F.W.D. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite: Clays & Clay Minerals 24, 53–59.

    Article  Google Scholar 

  • Malia, P. B. and Douglas, L. A. (1987) Identification of expanding layer silicates: Charge density vs. expansion properties: in Proc. Int. Clay Conf., Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 277–283.

    Google Scholar 

  • Murad, E. (1987) Mössbauer spectra of nontronites: Structural implications and characterization of associated iron oxides: Z. Pflanzenernähr. Bodenk. 150, 279–285.

    Article  Google Scholar 

  • Murad, E. (1988) Properties and behavior of iron oxides as determined by Mössbauer spectroscopy: in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., D. Reidel, Dordrecht, 309–350.

    Chapter  Google Scholar 

  • Murad, E. and Schwertmann, U. (1983) The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite: Clay Miner. 18, 301–312.

    Article  Google Scholar 

  • Schneiderhöhn, P. (1965) Nontronit vom Hohen Hagen and Chloropal vom Meenser Steinberg bei Göttingen: Tschermaks Min. Pet. Mitt. 10, 385–399.

    Article  Google Scholar 

  • Sprenkel-Segel, E. L. (1970) Recoilless resonance spectroscopy of meteoritic iron oxides: J. Geophys. Res. 75, 6618–6630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lear, P.R., Komadel, P. & Stucki, J.W. Mössbauer Spectroscopic Identification of Iron Oxides in Nontronite From Hohen Hagen, Federal Republic of Germany. Clays Clay Miner. 36, 376–378 (1988). https://doi.org/10.1346/CCMN.1988.0360414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1988.0360414

Key Words

Navigation