Skip to main content
Log in

Sintering of Montomorillonites Pillared by Hydroxy-Aluminum Species

  • Published:
Clays and Clay Minerals

Abstract

The sintering of montmorillonites pillared by hydroxy-Al species was investigated by several techniques. The change of the microporosity of the pillared interlayer clay with temperature shows that sintering was mainly due to the loss of microporosity. On calcination of the parent clay at 760°C, the X-ray powder diffraction pattern did not change; the 060 line shifted only slightly from 8.988 to 9.017 Å. The infrared (IR) spectrum suggested some dehydroxylation, but the structure appears to have been preserved. On calcination of the pillared clay at >700°C, the intensity of the 001 line decreased steadily, the 060 line broadened, and the b parameter decreased slightly from 8.988 to 8.928 Å. Fe3+ ions apparently occupied only one site after calcination at 300°C and two sites after calcination at 700°C. Smaller isomer shifts and higher quadrupole splittings in the Mössbauer spectra suggest that calcination produced more covalent bonding of Fe3+ and a highly distorted structure. The IR spectrum was significantly modified by calcination of the sample, and the 935- and 1125-cm−1 bands disappeared and the 1035-cm−1 band broadened. These results suggest that at <700°C the pillars sintered and that the clay progressively decomposed at >750°C. The pillaring-induced decrease of thermal stability of the clay was likely due to the introduction of protons during the first step of the preparation. The thermal stability of these Al-pillared interlayer complexes is comparable to that reported for hydroxy-silicoaluminum montmorillonites and fluorhectorites.

Résumé

Le frittage de montmorillonites pontées par des polycations aluminiques a été étudié par différentes techniques. Les variations de la porosité de l’argile pontée en fonction de la température de calcination sous air sec montrent que le frittage est principalement dû à la disparition de la microporosité. Le spectre de rayons X de l’argile initiale est préservé après calcination à 760°C, la seule modification notable étant un léger déplacement de la raie 060 de 8,988 à 9,017 Å; le spectre infrarouge révèle un début de deshydroxylation, mais la structure reste intacte. La calcination de l’argile pontée provoque une diminution régulière de l’intensité de la raie 001 et un élargissement de la raie 060 au dessus de 700°C, avec une légère contraction du paramètre b de 8,988 à 8,928 Å. Les ions Fe3+ occupent un seul type de site après calcination à 300°C et deux sites différents après calcination à 700°C. Après calcination, le déplacement chimique relatif à ces ions diminue et l’écartement quadrupolaire augmente, ce qui suggère des liaisons plus covalentes avec le réseau et une structure très désordonnée. Le spectre IR est également fortement modifié par la calcination avec la disparition des bandes de vibration à 935 et 1125 cm−1 et l’élargissement de la bande à 1035 cm−1. Ces résultats sont interprétés par un frittage des piliers aluminiques pour T <700°C et une destruction progressive du feuillet de l’argile au dessus de 750°C. La baisse de stabilité thermique de l’argile induite par le pontage est attribuée à l’introduction de protons au cours de la première étape de la préparation. La stabilité thermique de ces argiles pontées par des polycations aluminium est comparable à celle des montmorillonites et des fluorhectorites pontées par des silico-aluminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, L. B. and Sand, L. B. (1958) Factors affecting maximum hydrothermal stability in montmorillonites: Amer. Mineral. 43, 641–648.

    Google Scholar 

  • Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951) The determination of pore volume and area distributions in porous substances. Computations from nitrogen isotherms: J. Amer. Chem. Soc. 73, 373–380.

    Article  Google Scholar 

  • Bartley, G. J. J. and Burch, R. (1985) Zr-containing pillared interlayer clays. Part III. Influence of method of preparation on the thermal and hydrothermal stability: Appl. Catal. 19, 175–186.

    Google Scholar 

  • Jacobs, P., Poncelet, G., and Schutz, A. (1982) Procédé de préparation d’argiles pontées, argiles préparées par ce procédé et applications desdites argiles: Eur. Patent 0073 718, 24 pp.

  • Lahav, N., Shani, U., and Shabtai, J. (1978) Cross-linked smectites. I—Synthesis and properties of hydroxy-alumi-num-montmorillonite: Clays & Clay Minerals 26, 107–115.

    Article  Google Scholar 

  • Lewis, R. M., Ott, K. C., and Van Santen, R. A. (1985) Silicaclay complexes. U.S. Patent 4,510,257, 14 pp.

    Google Scholar 

  • Occelli, M. L. (1983) Catalytic cracking with an interlayered clay—A two dimensional molecular sieve: Ind. Eng. Chem. Prod. Res. Devel. 22, 553–559.

    Article  Google Scholar 

  • Occelli, M. L. and Tindwa, R. M. (1983) Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars: Clays & Clay Minerals 31, 22–28.

    Article  Google Scholar 

  • Pinnavaia, T. J., Landau, S. D., Tzou, M. S., Johnson, I. D., and Lipsicas, M. (1985a) Layer cross-linking in pillared clays: J. Amer. Chem. Soc. 107, 7222–7224.

    Article  Google Scholar 

  • Pinnavaia, T. J., Tzou, M. S., and Landau, S. D. (1985b) New chromia pillared clay catalysts: J. Amer. Chem. Soc. 107, 4783–4785.

    Article  Google Scholar 

  • Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J. (1985) High-resolution solid state 27A1 and 29Si nuclear magnetic resonance study of pillared clays: J. Amer. Chem. Soc. 107, 2362–2369.

    Article  Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites: Clays & Clay Minerals 25, 94–101.

    Article  Google Scholar 

  • Ruebenbauer, K. and Birchall, T. (1979) A computer programme for the evaluation of Mössbauer data: Hyp. Interact. 7, 125–133.

    Article  Google Scholar 

  • Shabtai, J. and Lahav, N. (1980a) Cross-linked montmorillonite molecular sieves: U.S. Patent 4,216,188, 8 pp.

    Google Scholar 

  • Shabtai, J., Lazar, R., and Oblad, A. G. (1980b) Acidic forms of cross-linked smectites. A novel type of cracking catalysts: in Proc. 7th Int. Cong. Catal., Tokyo, 1980, T. Seiyama and K. Tanabe, eds., Kodansha Elsevier, Tokyo, 828–840.

    Google Scholar 

  • Sterte, J. (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite: Clays & Clay Minerals 34, 658–664.

    Article  Google Scholar 

  • Sterte, J. and Shabtai, J. (1987) Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum montmorillonites and fluorhectorites: Clays & Clay Minerals 35, 429–439.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961a) A new approach to assignment of infra-red absorption bands in layer-structure silicates: Z. Kristallogr. 115, 200–214.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961b) Isomorphous substitution and infra-red spectra of the layer lattice silicates: Amer. Mineral. 46, 32–51.

    Google Scholar 

  • Tichit, D., Fajula, F., Figueras, F., Bousquet, J., and Gueguen, C. (1985) Thermal stability and acidity of Al3+ cross-linked smectites: in Studies in Surface Science and Catalysis, Vol. 20, B. Imelik, C. Naccache, G. Coudurier, Y. Ben Taarit, and J. C. Vedrine, eds., Elsevier, Amsterdam, 351–360.

    Google Scholar 

  • Tichit, D., Fajula, F., Figueras, F., Gueguen, C., and Bousquet, J. (1988) Catalytic properties of Al-pillared clays in the cracking of heavy fuels: Int. Cong. Catal., Calgary (in press).

    Google Scholar 

  • Tokarz, M. and Shabtai, J. (1985) Cross-linked smectites. IV. Preparation and properties of hydroxyaluminum-pillared Ce- and La-montmorillonites and fluorinated NH4-montmorillonites: Clays & Clay Minerals 33, 89–98.

    Article  Google Scholar 

  • Vaughan, D. E. W., Lussier, R. J., and Magee, J. S. (1979) Pillared inter-layered clay materials useful as catalysts and sorbents: U.S. Patent 4,176,090, 14 pp.

    Google Scholar 

  • Yamanaka, S. and Brindley, G. W. (1978) Hydroxy-nickel interlayering in montmorillonite by titration method: Clays & Clay Minerals 26, 21–24.

    Article  Google Scholar 

  • Yamanaka, S., Nishihara, T., and Hattori, M. (1986) Preparation and properties of TiO2 pillar interlayered clay: Preprints of poster papers, 7th Int. Zeol. Conf., Tokyo, 1986, Japan Assoc, of Zeolite, Tokyo, 29–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tichit, D., Fajula, F., Figueras, F. et al. Sintering of Montomorillonites Pillared by Hydroxy-Aluminum Species. Clays Clay Miner. 36, 369–375 (1988). https://doi.org/10.1346/CCMN.1988.0360413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1988.0360413

Key Words

Navigation