Skip to main content
Log in

Interpretation of Mössbauer Spectra of Nontronite, Celadonite, and Glauconite

  • Published:
Clays and Clay Minerals

Abstract

A new approach to the interpretation of Mössbauer spectra of Fe3+-phyllosilicates having vacant trans-octahedra is based on (1) crystal structure simulation methods that allow for the size and the shape of a Fe3+-octahedron as a function of the nearest surrounding cations; and (2) calculations of electric field gradients (EFG) on Fe3+ in terms of the ionic point-charge model. Calculations were performed by direct summation within the region of radius ≤50 Å. Coordinates for the anions in the coordination octahedra have been assigned to take into account the nearest cationic environment. Atomic coordinates for the rest of the summation volume are those for the average unit cell. EFG calculations for cation combinations responsible for the visible quadrupole splitting Δvis in the spectra of nontronite, “red” muscovite, and celadonite have led to good agreement between Δvis and Δcalc. Computer fitting of the nontronite and celadonite spectra based on EFG calculations for the rest of the possible cation combinations suggests that the distribution of tetrahedral cations in nontronite obeys the Loewenstein rule, and in celadonite, the distribution of R3+ and R2+ over cis-octahedra is predominantly ordered, in agreement with electron diffraction and infrared spectroscopy data. The Mössbauer spectrum of one of the glauconites suggested the presence of celadonite-like and muscovite-like domains in its 2:1 layers.

Резюме

Описан новый подход к интерпретации мессбауэровских спектров Ре3+-филлосиликатов с вакантными транс-октаэдрами. Он основан на: (1) применении методов структурного моделирования, позволяющих учитывать размер и форму Ре3+-октаэдра в зависимости от ближайших окружающих катионов; (2) расчетах градиентов электрических полей (ГЭП) на ядре Ре3+ в модели ионных точечных зарядов. Расчеты выполнялись прямым суммированием в области радиусом <50 Å. Координаты анионов координирующего октаэдра задавались в соответствии с ближайшим катионным окружением. В остальной области суммирования использовались координаты атомов усредненной элементарной ячейки.

Расчеты ГЭП для комбинаций катионов, ответственных за видимое квадрупольное расщепление Δвид в спектрах нонтронита, “красного” мусковита и селадонита, привели к хорошему согласию между Δввд и Δрасч. Из разложения спектров нонтронита и селадонита, основанного на расчетах ГЭП для остальных возможных комбинаций, следует, что распределение тетраэдрических катионов в нон-троните подчиняется правилу Левенштейна, а в селадоните распределение катионов E.3+ и K2+ по цис-октаэдрам является преимущественно упорядоченным, что согласуется с электронографическими и ИК-спектроскопическими данными.

Из анализа мессбауэровского спектра одного из глауконитов следует наличие селадонитоподобных и мусковитоподобных доменов в 2:1 слоях его структуры.

Обсуждаются методологические аспекты интерпретации мессбауэровских спектров диоктаэдри-ческих филлосиликатов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annersten, H. (1975) A Mössbauer characteristic of ordered glauconite: Neues Jahr. Mineral. Monatshefte 8, 378–384. ai Bagin, V. I., Gendler, T. S., Daynyak, L. G., and Kuz’min, R.N. (1980) Mössbauer, thermomagnetic, and X-ray study of cation ordering and high-temperature decomposition in biotite: Clays & Clay Minerals 28, 188–196.

    Google Scholar 

  • Bailey, S. W. (1966) Status of clay mineral structures: in Clays and Clay Minerals, Proc. 14th Natl. Conf., Berkeley, California, 1965, S. W. Bailey, ed., Pergamon Press, New York, 1–23.

    Google Scholar 

  • Baur, W. H. (1971) The prediction of bond length variations in silicon-oxygen bond: Amer. Mineral. 56, 1573–1599.

    Google Scholar 

  • Besson, G., Bookin, A. S., Daynyak, L. G., Rautureau, M., Tsipursky, S. I., Tchoubar, G, and Drits, V. A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronite: J. Appl. Cryst. 16, 374–383.

    Article  Google Scholar 

  • Bookin, A. S., Drits, V. A., Rozdestvenskaya, I. V., Semenova, T. F., and Tsipursky, S. I. (1982) Comparison of orientation of OH-bonds in layer silicates by diffraction methods and electrostatic calculations: Clays & Clay Minerals 30, 409–414.

    Article  Google Scholar 

  • Bookin, A. S. and Smoliar, B. B. (1985) Prediction of cation-oxygen interatomic distances in coordination polyhedra of the 2:1 layer silicates (pyrophyllite, talc and micas without Li and F): Mineralogichesky Zhurnall, 51–59 (in Russian).

    Google Scholar 

  • Coey, J. M. D., Chukhrov, F. D., and Zvyagin, B. B. (1984) Cation distribution, Mössbauer spectra, and magnetic properties of ferripyrophyllite: Clays & Clay Minerals 32, 198–204.

    Article  Google Scholar 

  • Daynyak, L. G. (1980) Interpretation of Mössbauer spectra of some Fe3+-containing layer silicates on the basis of structural modelling: Ph.D. thesis, Geological Institute, U.S.S.R., Academy of Sciences, Moscow (in Russian), p. 18.

    Google Scholar 

  • Daynyak, L. G., Bookin, A. S., Drits, V. A., and Tsipursky, S. I. (1981a) Mössbauer and electron diffraction study of cation distribution in celadonite: Acta Crystallogr. A37 (suppl.), C-362.

  • Daynyak, L. G., Bookin, A. S., and Drits, V. A. (1984a) Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. II. Nontronite: Kristallografiya 29, 304–311 (in Russian).

    Google Scholar 

  • Daynyak, L. G., Bookin, A. S., and Drits, V. A. (1984b) Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. III. Celadonite: Kristallografiya 29, 312–321 (in Russian).

    Google Scholar 

  • Daynyak, L. G., Daynyak, B. A., Bookin, A. S., and Drits, V. A. (1984c) Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. I. Computation of electric field gradients on the basis of structural modelling: Kristallografiya 29, 94–100 (in Russian).

    Google Scholar 

  • Daynyak, L. G., Drits, V. A., Kudryavtsev, D. I., Simanovich, I. M., and Slonimskaya, M. V. (1981b) Crystal chemical specificity of trioctahedral smectites—Products of secondary alteration of oceanic and continental basalts: Dokl. Akad. Nauk S.S.S.R. 259, 1458–1462 (in Russian).

    Google Scholar 

  • Donnay, G., Donnay, J. D. H., and Takeda, H. (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimension: Acta Crystallogr. 17, 1374–1381.

    Article  Google Scholar 

  • Drits, V. A. (1971) Regularities of crystal chemical structure of trioctahedral micas: in Epigenesis and its Mineral Indicators, Nauka, Moscow, 96–110 (in Russian).

    Google Scholar 

  • Drits, V. A. (1975) Structural and crystal chemical peculiarities of layer silicates: in Crystal Chemistry of Minerals and Problems of Geology, Nauka, Moscow, 35–51 (in Russian).

    Google Scholar 

  • Drits, V. A., Tsipursky, S. I., and Plançon, A. (1984) Application of a method for the intensity distribution calculations to the electron diffraction structure analysis: Izv. Akad. NaukS.S.S.R. Ser. Fiz. 49, 1708–1713 (in Russian).

    Google Scholar 

  • Eyrish, M. V. and Dvoretchenskaya, A. A. (1976a) Study of Fe3+ ions positions and role in the structure of clay min-erals with gamma resonance spectroscopy (change in the condition of Fe3 ions under montmorillonite dehydration and dehydroxylization: Geochemistry 4, 597–606 (in Russian).

    Google Scholar 

  • Eyrish, M. V. and Dvoretchenskaya, A. A. (1976b) Study of Fe3+ ions positions and role in the structure of clay minerals with gamma resonance spectroscopy (the relation to mineral crystal chemistry): Geochemistry 5, 748–757 (in Russian).

    Google Scholar 

  • Giese, R. F. (1971) Hydroxyl orientation in muscovite as indicated by electrostatic energy calculation: Science 172, 263–264.

    Article  Google Scholar 

  • Goodman, B. A. (1976a) The Mössbauer spectrum of a ferrian muscovite and its implications in the assignment of sites in dioctahedral micas: Mineral. Mag. 40, 513–517.

    Article  Google Scholar 

  • Goodman, B. A. (1976b) The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer silicates: J. Phys. Colloque C6 (Supplement au 12) 819–823.

    Google Scholar 

  • Goodman, B. A. (1978) The Mössbauer spectra of nontronite: Consideration of an alternative assignment: Clays & Clay Minerals 26, 176–177.

    Article  Google Scholar 

  • Goodman, B. A., Russell, J. D., and Fraser, A. R. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite: Clays & Clay Minerals 24, 53–59.

    Article  Google Scholar 

  • Govaert, A., De Grave, E., and Qurtier, H. (1979) Mössbauer analysis of glauconites of different Belgian finding places: J. Phys. Colloque C2, 442–444.

    Google Scholar 

  • Güven, N. (1971) The crystal structure of 2M1, phengite and 2M, muscovite: Z. Kristallogr. 134, 196–212.

    Google Scholar 

  • Heller-Kallai, L. and Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy: Phys. Chem. Minerals 7, 223–238.

    Article  Google Scholar 

  • Kotlicki, A., Szczyrba, J., and Wiewiora, A. (1981) Mössbauer study of glauconites from Poland: Clay Miner. 16, 221–230.

    Article  Google Scholar 

  • Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates: Amer. Mineral. 39, 92–96.

    Google Scholar 

  • Malkova, K. M. (1956) On the celadonite of Pobuzhye: in Collected Papers on Mineralogy 10, Lvov Geol. Soc. 305–318 (in Russian).

    Google Scholar 

  • Malysheva, T. V., Kazakov, G. A., and Satarova, L. M. (1976) Temperature of sedimentary rocks epigenesis according to Mössbauer spectroscopy: Geochemistry 9, 1291–1299 (in Russian).

    Google Scholar 

  • McCauley, J. W. and Newnham, R. E. (1971) Origin and prediction of ditrigonal distortion in micas: Amer. Mineral. 56, 1626–1638.

    Google Scholar 

  • McConchie, D. M., Ward, J. B., McCann, V. B., and Lewis, D. W. (1979) Mössbauer investigation of glauconite and its geological significance: Clays & Clay Minerals 27, 339–348.

    Article  Google Scholar 

  • MEDI (1975) Mössbauer effect data index covering the 1975 literature: J. C. Stevens and V. Stevens, eds. Univ. North Carolina at Asheville, 445 pp.

  • Mineeva, R. M. (1978) Relationship between Mössbauer spectra and defect structure in biotites from electric gradient calculations: Phys. Chem. Minerals 2, 267–277.

    Article  Google Scholar 

  • Pavlishin, V. I., Platonov, A. N., Polshin, E. V., Semenova, T. F., and Starova, G. L. (1978) Micas with iron in quadruple coordination: Zapisky Vses. Mineral. Obshchestva 107, 165–176 (in Russian).

    Google Scholar 

  • Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer-lattice silicates. Regression relations: Amer. Mineral. 47, 617–636.

    Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1978) Mössbauer spectra of glauconites reexamined: Clays & Clay Minerals 26, 173–175.

    Article  Google Scholar 

  • Russell, J. D., Goodman, B. A., and Fraser, A. R. (1979) Infrared and Mössbauer studies of reduced nontronites: Clays & Clay Minerals 27, 63–71.

    Article  Google Scholar 

  • Shutov, V. D., Kats, M. Ya., Drits, V. A., Sokolova, A. L., and Kazakov, G. A. (1972) Crystallochemical heterogeneity of glauconite as depending on the conditions of its formation and postsedimentary changes: in Proc. Int. Clay Conf., Madrid, 1972, J. M. Serratosa, ed., Div. Ciencias C.S.I.C, Madrid, 269–279.

    Google Scholar 

  • Slonimskaya, M. V., Besson, G., Daynyak, L. G., Tchoubar, C., and Drits, V. A. (1986) The interpretation of the IR spectra of celadonites and glauconites in the region of OH stretching frequencies: Clay Miner. 21, 377–388.

    Article  Google Scholar 

  • Smoliar, B. B., Daynyak, L. G., Bookin, A. S., and Drits, V. A. (1984) Structural features of dioctahedral mica poly-types and their crystal structure simulation: Collected Abstr. Int. Conf. Crystal Growth and Characterization of Polytype Structures, Marseille, France, 1984, 65–66.

    Google Scholar 

  • Tsipursky, S. I. and Drits, V. A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites: Clay Miner. 19, 177–193.

    Article  Google Scholar 

  • Tsipursky, S. I., Drits, V. A., and Chekin, S. S. (1978) Study of structural ordering of nontronite by means of oblique electron diffraction: Izv. Akad. Nauk S.S.S.R., Ser. Geol. 10, 105–113 (in Russian).

    Google Scholar 

  • Tsipursky, S. I., Drits, V. A., and Plançon, A. (1985) Calculation of the intensities distribution in the oblique texture electron diffraction patterns: Kristallografiya 30, 38–44 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daynyak, L.G., Drits, V.A. Interpretation of Mössbauer Spectra of Nontronite, Celadonite, and Glauconite. Clays Clay Miner. 35, 363–372 (1987). https://doi.org/10.1346/CCMN.1987.0350506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1987.0350506

Key Words

Navigation