Skip to main content
Log in

Photochemical Dissolution of Goethite in Acid/Oxalate Solution

  • Published:
Clays and Clay Minerals

Abstract

During photochemical dissolution of goethite in acid/oxalate solution, Fe3+, Fe2+, and CO2 were released and towards the end of the reaction ferrous oxalate precipitated. The dissolution process involved an initial slow stage followed by a much faster reaction. The slow stage was eliminated by addition of 20 ppm Fe2+ to the system at the start of the reaction. The presence of this Fe2+ did not accelerate the secondary dissolution process. Both protons and oxalate ions appear to have been involved in the dissolution process. Dissolution was accelerated by an increase in oxalate concentration (from 0.0025 to 0.025 M) in the system and also depended on pH, reaching a maximum rate at pH 2.6. Highly substituted (15.9 mole % Al) goethite dissolved more slowly per unit area than unsubstituted goethite. Lepidocrocite (γ-FeOOH) dissolved faster than goethite. The first stage of the dissolution process probably proceeded by slow release of Fe3+ through complexation with oxalate adsorbed on the goethite surface. The faster, secondary step appears to have been a reductive dissolution reaction involving adsorbed ferrous oxalate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgartner, E., Blesa, M. A., Marinovitch, H. A., and Maroto, A. J. G. (1983) Heterogeneous electron transfer pathways in dissolution of magnetite in oxalic acid solution: Inorg. Chem. 22, 2224–2226.

    Article  Google Scholar 

  • Cornell, R. M. and Giovanoli, R. (1986) Factors that govern the formation of multi-domainic goethites: Clays & Clay Minerals 34, 557–564.

    Article  Google Scholar 

  • Cornell, R. M., Posner, A. M., and Quirk, J. P. (1974) Crystal morphology and the dissolution of goethite: J. Inorg. Nucl. Chem. 36, 1937–1946.

    Article  Google Scholar 

  • Cornell, R. M., Posner, A. M., and Quirk, J. P. (1976) Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH): J. Inorg. Nucl. Chem. 38, 563–567.

    Article  Google Scholar 

  • DeEndreddy, A. S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method: Clay Miner. Bull. 9, 209–217.

    Article  Google Scholar 

  • Deyrioux, H. and Peneloux, A. (1969) Contribution à l’étude des oxalates de certains métaux bivalents. 1. Structure crystalline des deux formes allotropique de l’oxalate ferreux dehydrate: Bull. Soc. Chim. France, 2675–2681.

    Google Scholar 

  • Finden, D. A. S., Tipping, E., Jaworski, G. H. M., and Reynolds, C. S. (1984) Light-induced reduction of natural iron(III) oxides and its relevance to phytoplankton: Nature 309, 783–784.

    Article  Google Scholar 

  • Fischer, W. R. (1973) Die Wirkung von zweiwertigen Eisen auf Auflösung und Umwandlung von Eisen(III)-hydroxi-den: in Pseudologey and Gley: Genesis and Use of Hydromorphic Soils, Proc. Int. Soc. Soil Sci. Trans., Stuttgart, Germany, E. Schlichtling and U. Schwertmann, eds., 37–44.

    Google Scholar 

  • Giovanoli, R. and Brutsch, R. (1974) Dehydration of 7-FeOOH: Direct observation of the mechanism: Chimia 28, 188–191.

    Google Scholar 

  • Hermann, J. M., Mozzanega, M. N., and Pichat, P. (1983) Oxidation of oxalic acid in aqueous suspensions of semiconductors illuminated with UV or visible light: J. Photochem. 22, 333–343.

    Article  Google Scholar 

  • Mann, S., Cornell, R. M., and Schwertmann, U. (1985) The influence of aluminium on iron oxides: A high-resolution electron microscopy study of aluminous goethites: Clay Miner. 20, 255–262.

    Article  Google Scholar 

  • Miller, W. P., Zelazny, L. W., and Martens, D. C. (1986) Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids: Geoderma 37, 1–13.

    Article  Google Scholar 

  • Parfitt, R. L., Farmer, V. C., and Russell, J. D. (1977) Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite: J. Soil Sci. 28, 29–39.

    Article  Google Scholar 

  • Parker, C. A. (1953) A new, sensitive chemical actinometer. I. Some trials with potassium ferrioxalate: Proc. Royal Soc. London 220, 104–116.

    Google Scholar 

  • Schulze, D. G. and Schwertmann, U. (1984) The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites: Clay Miner. 19, 521–539.

    Article  Google Scholar 

  • Segal, R. G. and Sellars, R. M. (1984) Redox reactions at solid-liquid interfaces: Adv. Inorg. Bioinorg. Mechanisms 3, 97–130.

    Google Scholar 

  • Sellars, R. M. and Williams, W. J. (1984) High temperature dissolution of nickle chromium ferrite by oxalic acid and nitriloacetic acid: Farad. Disc. Chem. Soc. 77, 265–274.

    Article  Google Scholar 

  • Sidhu, P. S., Gilkes, R. J., Cornell, R. M., Posner, A. M., and Quirk, J. P. (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids: Clays & Clay Minerals 29, 269–279.

    Article  Google Scholar 

  • Sillen, L. G. and Martell, A. E. (1964) Stability Constants of Metal-Ion Complexes: The Chemical Society, London, 360–361.

    Google Scholar 

  • Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit einer Ammonium Oxalat Lö-sung: Z. Pflanzenernahr. Dung. Bodenkd. 105, 194–202.

    Article  Google Scholar 

  • Schwertmann, U. (1984) The influence of aluminium on iron oxides: IX. Dissolution of Al-goethite in 6 M HC1: Clay Miner. 19, 9–19.

    Article  Google Scholar 

  • Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals: Adv. Soil Sci. 1, 172–200.

    Google Scholar 

  • Stone, A.T. (1987) Reductive dissolution of manganese (III, IV) oxides: The effect of oxalate and pyruvate: Geochim. Cosmochim. Acta (in press).

    Google Scholar 

  • Waite, T. W. and Morel, F. M. M. (1984) Photoreductive dissolution of colloidal iron oxide: Effect of citrate: J. Colloid Interface Sci. 102, 121–137.

    Article  Google Scholar 

  • Waite, T. D., Torikov, A., and Smith, J. D. (1986) Photoassisted dissolution of colloidal iron oxides by thiol containing compounds. I. Dissolution of hematite (α-Fe2O3): J. Colloid Interface Sci. 112, 412–420.

    Article  Google Scholar 

  • Westall, J. C. (1982) FITEQL, a computer program for determination of chemical equilibrium constants from experimental data: Report 82-01, Chemistry Department, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Zinder, B., Furrer, G., and Stumm, W. (1986) A coordination chemical approach to the kinetics of weathering: II. Dissolution of Fe(III) oxides: Geochim. Cosmochim. Acta 50, 1816–1829.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, R.M., Schindler, P.W. Photochemical Dissolution of Goethite in Acid/Oxalate Solution. Clays Clay Miner. 35, 347–352 (1987). https://doi.org/10.1346/CCMN.1987.0350504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1987.0350504

Key Words

Navigation