Skip to main content
Log in

Nuclear Magnetic Resonance, Infrared, and X-ray Powder Diffraction Study of Dimethylsulfoxide and Dimethylselenoxide Intercalates with Kaolinite

  • Published:
Clays and Clay Minerals

Abstract

Dimethylselenoxide (DMSeO) forms three structurally resolvable intercalates with kaolinite (d(001) = 10.95, 11.26, and 11.38 Å). The 11.26-Å kaolinite: DMSeO intercalate is structurally analogous to the 3-D ordered kaolinite: DMSO intercalate (d(001) = 11.22 Å). Infrared and solid-state 77Se nuclear magnetic resonance data indicate that all DMSeO molecules are equivalent in the structure and, therefore, that the 11.26-Å kaolinite: DMSeO intercalate structure is C-face centered. Structural model refinement from X-ray powder diffraction (XRD) data further support this conclusion (Pl, a = 5.195(2), b = 8.990(4), c = 11.946(5) Å, α = 91.33(2)°, β = 109.39(2)°, γ = 89.77(2)°). The kaolinite: DMSO intercalate structure was subsequently re-refined from the XRD profile in C-face centered Pl. The derived orientation of the DMSO and DMSeO molecules with respect to the basal plane of their respective intercalates is in agreement with polarized infrared measurements of the angles with ab of S=O (40.3°) and Se=O (38.8°) for the 11.26-Å intercalate. The locations of the organic molecules also agree with observed infrared band splittings and perturbations. Interatomic distances calculated from the band shifts agree with those for the XRD derived structures.

The 11.38-Å kaolinite: DMSeO intercalate is closely related to the 11.26-Å intercalate, the main differences being a 2-fold disorder in the orientation of the DMSeO molecule and less penetration of the kaolinite ditrigonal cavity by that molecule. The 10.95-Å kaolinite: DMSeO intercalate, displaying disorder parallel to [110], was obtained from the 11.26- or 11.38-Å intercalates by removal of some DMSeO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M. (1979) The crystal structure of a diekite: N-methylformamide intercalate [Al2Si2O5(OH)4 HCONHCH3]: Acta Crystallogr. B35, 1084–1088.

    Article  Google Scholar 

  • Adams, J. M. (1983) Hydrogen atom positions in kaolinite by neutron profile refinement: Clays & Clay Minerals 31, 352–356.

    Article  Google Scholar 

  • Adams, J. M. and Jefferson, D. A. (1976) The crystal structure of a diekite: formamide intercalate Al2Si2O5(OH4·HCONH2: Acta Crystallogr. B32, 1180–1183.

    Article  Google Scholar 

  • Ayrey, G., Barnard, D., and Woodbridge, D. T. (1962) The oxidation of organoselenium compounds by ozone: J. Chem. Soc., 2089–2099.

    Google Scholar 

  • Bellamy, L. T. and Owen, A. J. (1969) A simple relationship between the infra-red stretching frequencies and the hydrogen bond distances in crystals: Spectrochim. Acta 25A, 329–333.

    Article  Google Scholar 

  • Brindley, G. W. and Robinson, K. (1946) The structure of kaolinite: Mineral. Mag. 27, 242–253.

    Google Scholar 

  • Costanzo, P. M. and Giese, R. F., Jr. (1986) Ordered halloysite: dimethylsulfoxide intercalate: Clays & Clay Minerals 34, 105–107.

    Article  Google Scholar 

  • Costanzo, P. M., Giese, R. F., Jr., and Lipsicas, M. (1984) Static and dynamic structure of water in hydrated kaolinites. I. The static structure: Clays & Clay Minerals 32, 419–428.

    Article  Google Scholar 

  • Drits, V. A. and Kashaev, A. A. (1960) An X-ray study of a single crystal of kaolinite: Sov. Phys. Crystallogr. Engl. Trans. 5, 207–210.

    Google Scholar 

  • Hamilton, W. C. (1965) Significance tests on the crystallographic R factor: Acta Crystallogr. 18, 502–510.

    Article  Google Scholar 

  • Hopf, G. and Paetzold, R. (1972) Untersuchungen an SelenVerbindungen LX*. Schwingungsanalyse des Dimethylselenoxids: J. Mol. Struct. 13, 361–369.

    Article  Google Scholar 

  • Jacobs, H. and Sterckx, M. (1970) A contribution to the study of the intercalation of dimethyl sulfoxide in the kaolinite lattice: in Proc. Reunion Hispano-Belge Miner. Arg., Madrid, J. M. Serratosa, ed., Cons. Super. Invest. Cient., Madrid, 154–160.

    Google Scholar 

  • Johnston, C. T., Sposito, G., Bocian, D. F., and Birge, R. R. (1984) Vibrational spectroscopic study of interlamellar kaolinite-dimethyl sulfoxide complex: J. Phys. Chem. 88, 5959–5964.

    Article  Google Scholar 

  • McFarlane, W. and Wood, R. J (1972) Nuclear magnetic double-resonance studies of organo-selenium compounds: J. Chem. Soc., Dalton Trans., 1397–1402.

    Google Scholar 

  • Miyoshi, N., Furui, S., Murai, S., and Sonoda, N. (1975) Oxyselenation: Reaction of olefins with dimethyl selenoxide: JCS Chem. Commun., p. 293.

    Google Scholar 

  • Newnham, R. E. and Brindley, G. W. (1956) The crystal structure of dickite: Acta Crystallogr. 9, 759–764.

    Article  Google Scholar 

  • Odom, J. D., Dawson, W. H., and Ellis, P. D. (1979) Selenium-77 relaxation time studies on compounds of biological importance: Dialkyl selenides, dialkyl diselenides, selenols, selenonium compounds, and seleno oxyacids: J. Amer. Chem. Soc. 101, 5815–5822.

    Article  Google Scholar 

  • Olejnik, S., Aylmore, L. A. G., Posner, A. M., and Quirk, J. P. (1968) Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes: J. Phys. Chem. 72: 241–249.

    Article  Google Scholar 

  • Paetzold, R. (1968) Untersuchungen an Selen-Verbindungen—XLVI. Korrelation zwischen SO- und SeO-Valenzkraftkonstanten: Spectrochim. Acta 24A, 717–720.

    Article  Google Scholar 

  • Paetzold, R. (1970) Untersuchungen an Selen-Verbindungen—LII. Korrelation zwischen Valenzkraftkonstanten und Bindungslângen von Selen-Sauerstoff-Bindungen: Spectrochim. Acta 26A, 577–580.

    Article  Google Scholar 

  • Paetzold, R. und Bochmann, G. (1968) Aliphatische selenoxide und Selenone: Z. Anorg. Allg. Chem. 360, 293–299.

    Article  Google Scholar 

  • Paetzold, R., Lindner, U., Bochmann, G., and Reich, P. (1967) Dimethyl- und Diäthylselenoxid sowie ihre Oxoniumsalze Darstellung, Eigenschaften und Schwingungsspektren: Z. Anorg. Allg. Chem. 352, 295–308.

    Article  Google Scholar 

  • Plançon, A. and Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites: Clays & Clay Minerals 25, 436–450.

    Article  Google Scholar 

  • Raupach, M. (1986) An explanation of infrared band shifts at clay surfaces in organic and other systems: in Trans. 13th Cong. Int. Soc. Soil Science, Hamburg, 1986, ISSS-AISS-IBG, Hamburg, p. 438.

    Google Scholar 

  • Raupach, M. and Janik, L. J. (1987) Polarized infrared study of anilinium vermiculite. I. Spectra and models: J. Coll. Int. Science (in press).

    Google Scholar 

  • Sheldrick, G. M. (1976) A program for crystal structure determination: University Chemical Laboratory, Cambridge, United Kingdom.

    Google Scholar 

  • Suitch, P. R. and Young, R. A. (1983) Atom positions in highly ordered kaolinite: Clays & Minerals 31, 357–366.

    Article  Google Scholar 

  • Syper, L. and Mlochowski, J. (1984) The convenient synthesis of organoselenium reagents: Synthesis, 439–442.

    Google Scholar 

  • Theng, B. K. G. (1974) The Chemistry of Clay-Organic Reactions: Wiley, New York, 239–260.

    Google Scholar 

  • Thomas, R., Shoemaker, C. B., and Klaas, E. (1966) The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO: Acta Crystallogr. 21, 12–20.

    Article  Google Scholar 

  • Thompson, J. G. (1985) Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates: Clays & Clay Minerals 33, 173–180.

    Article  Google Scholar 

  • Thompson, J. G. and Cuff, C. (1985) Crystal structure of kaolinite: dimethylsulfoxide intercalate: Clays & Clay Minerals 33, 490–500.

    Article  Google Scholar 

  • Thompson, J. G. and Withers, R. L. (1987) A transmission electron microscopy (TEM) contribution to the structure of kaolinite: Clays & Clay Minerals 35, 237–240.

    Article  Google Scholar 

  • Wiles, D. B. and Young, R. A. (1981) New computer program for Rietveld analysis of X-ray powder diffraction patterns: J. Appl. Crystallogr. 14, 149–151.

    Article  Google Scholar 

  • Young, R. A. and Wiles, D. B. (1981) Application of the Rietveld method for structure refinement with powder diffraction data: Adv. X-ray Anal. 24, 1–23.

    Google Scholar 

  • Zvyagin, B. B. (1960) Electron diffraction determination of the structure of kaolinite: Sov. Phys. Crystallogr. Engl. Trans. 5, 32–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raupach, M., Barron, P.F. & Thompson, J.G. Nuclear Magnetic Resonance, Infrared, and X-ray Powder Diffraction Study of Dimethylsulfoxide and Dimethylselenoxide Intercalates with Kaolinite. Clays Clay Miner. 35, 208–219 (1987). https://doi.org/10.1346/CCMN.1987.0350307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1987.0350307

Key Words

Navigation