Skip to main content
Log in

Curved Smectite in Soils from Volcanic ash in Kenya and Tanzania: A Low-Angle X-Ray Powder Diffraction Study

  • Published:
Clays and Clay Minerals

Abstract

Low-angle X-ray powder diffraction (XRD) measurements of soil samples, made at controlled relative humidities, showed the presence of major reflections at 20–33, 10–27, and 7–8 Å. The first reflection, which increased in intensity but did not shift in spacing with decreasing relative humidity, represents curved smectite layers. This spacing was also observed by high-resolution transmission electron microscopy. The value of 10–27 Å for the second reflection, the 001 reflection of smetite, is unusually high, probably due to poorly stacked, irregularly curved layers. The 7–8-Å reflection originates from kaolinite or dehydrated halloysite, which also contain curved layers. The more curved the layer structure of the smectite, the more difficult it is to detect this phase; therefore the XRD relative peak heights are not directly proportional to the percentages of the smectite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chapman, J. A. and Zussman, J. (1959) Further electron optical observations on crystals of antigorite: Acta Crys-tallogr. 12, 550–552.

    Article  Google Scholar 

  • De Wit, H. A. (1978) Soils and grassland types of the Ser-engeti plain (Tanzania): Their distribution and interrelations: Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 300 pp.

    Google Scholar 

  • Gilley, F. H. and Hill, V. G. (1959) X-ray study of synthetic Mg-Al serpentines and chlorites: Amer. Mineral. 44, 143–152.

    Google Scholar 

  • Jager, Tj. (1982) Soils of the Serengeti woodlands, Tanzania: Agric. Res. Rep. 912, PUDOC., Wageningen, 239 pp.

    Google Scholar 

  • Kunze, G. (1956) Die gewelte Struktur des Antigorites. I: Z. Kristallogr. Kristallgeom. 108, 83–107.

    Google Scholar 

  • Kunze, G. (1958) Die gewelte Struktur des Antigorites. II: Z. Kristallogr. Kristallgeom. 110, 282–320.

    Article  Google Scholar 

  • Kunze, G. (1961) Antigorit. Strukturtheoretische Grundla-gen und ihre Bedeutung fur Serpentin-Forschung: Fortschr. Miner. 39, 206–324.

    Google Scholar 

  • McKee, T. R., Dixon, J. B., Whitehouse, U. G., and Harling, D. F. (1973) Study of Te Puke halloysite by a high resolution electron microscope: 31st Ann. Electron Microscopy Soc. of America Meeting.

    Google Scholar 

  • Mizota, C. and van Reeuwijk, L. P. (1986) Clay mineralogy and chemistry of Andisols and related soils from diverse climatic regimes: International Soil Reference and Information Centre, Wageningen, The Netherlands, Monograph (in press).

    Google Scholar 

  • Pauling, L. (1930) The structure of the chlorites: Proc. Natl. Acad. Sci. 16, 578–582.

    Article  Google Scholar 

  • Roy, D. M. and Roy, R. (1954) Experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals: Amer. Mineral. 39, 957–975.

    Google Scholar 

  • Van der Gaast, S. J. and Kühnel, R. A. (1986) Effects of different cations and relative humidity on hydration-de-hydration mechanisms of Wyoming montmorillonite: Applied Clay Science (in press).

    Google Scholar 

  • Van der Gaast, S. J. and Vaars, A. J. (1981) A method to eliminate the background in X-ray diffraction patterns of oriented clay mineral samples: Clays & Clay Minerals 16, 383–393.

    Article  Google Scholar 

  • Van der Gaast, S. J., Wada, K., Wada, S.-L., and Kakuto, Y. (1985) Small-angle X-ray diffraction, morphology, and structure of allophane and imogolite: Clays & Clay Minerals 33, 237–243.

    Article  Google Scholar 

  • Wada, K. and Kakuto, Y. (1983) Intergradient vermiculite-kaolin mineral in a Korean Ultisol: Clays & Clay Minerals 31, 183–190.

    Article  Google Scholar 

  • Wielemaker, W. G. and Wakatsuki, T. (1984) Properties, weathering and classification of some soils formed in per-alkaline volcanic ash in Kenya: Geoderma 32, 21–44.

    Article  Google Scholar 

  • Zussman, J. (1954) Investigation of the crystal structure of antigorite. Mineral. Mag. 30, 498–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Gaast, S.J., Mizota, C. & Jansen, J.H.F. Curved Smectite in Soils from Volcanic ash in Kenya and Tanzania: A Low-Angle X-Ray Powder Diffraction Study. Clays Clay Miner. 34, 665–671 (1986). https://doi.org/10.1346/CCMN.1986.0340607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1986.0340607

Key Words

Navigation