Skip to main content
Log in

Dioctahedral Corrensite from Permian Red Beds, Lisbon Valley, Utah

  • Published:
Clays and Clay Minerals

Abstract

Regularly interstratified chlorite/smectite (corrensite) occurs as grain coatings in marine and eolian sandstones of the Permian Cutler Formation in Lisbon Valley, Utah. Corrensite dominates the <2-μm clay size fraction along with lesser amounts of regularly interstratified illite/smectite in bleached, permeable sandstones that are interbedded with smectite-dominated arkosic, red, laterally discontinuous fluvial sandstones. Chemical and X-ray powder diffraction analyses of the corrensites show them to be di/dioctahedral with 060 spacings of 1.501 to 1.508 Å and to contain significantly higher Al:Mg ratios than more common trioctahedral types. Calculated structural formulae are: corrensite, M0.6(Fe3+0.2Mg1.6Al4.6)(Al0.2Si7.8)O20(OH)10; illite/smectite, M1.5(Fe3+0.1Mg1.7Al2.8)(Al1.6Si6.4)O20(OH)4; and smectite, M0.9(Fe3+0.3Mg1.2Al2.8)(Al0.6Si7.4)O20(OH)4.

Chemical similarity between the smectite and the corrensite and pervasive distribution of smectite in low-permeability shales and siltstones suggest that the smectite was a precursor of the corrensite. Three stages of mineral precipitation in the Cutler Formation have been recognized. Quartz precipitated early as grain overgrowths, followed by the formation of authigenic clay minerals, and later calcite cementation which destroyed much of the original rock fabric. Calculations show that aluminous corrensite was favored by elevated temperature (≈ 100°C), low pH, and low dissolved silica. Local hydrothermal fluids rising along the Lisbon fault apparently permeated the Cutler red bed section and precipitated the clay minerals. The assemblage corrensite + illite/smectite in the sandstones probably formed by interaction of formation fluids with smectite and an Al-bearing phase, such as K-feldspar or kaolinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • April, R. H. (1980) Regularly interstratified chlorite/ver-miculite in contact metamorphosed red beds, Newark Group, Connecticut Valley: Clays & Clay Minerals 28, 1–11.

    Article  Google Scholar 

  • Bailey, S. W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals: Amer. Mineral. 65, 1–7.

    Google Scholar 

  • Blatter, C. L., Roberson, H. E., and Thompson, G. R. (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shale, Montana: Clays & Clay Minerals 21, 207–212.

    Article  Google Scholar 

  • Bradley, W. F. and Weaver, C. E. (1956) Chlorite-vermic-ulite: Amer. Mineral. 41, 497–504.

    Google Scholar 

  • Brigatti, M. F. and Poppi, L. (1984) Crystal chemistry of corrensite: A review: Clays & Clay Minerals 32, 391–399.

    Article  Google Scholar 

  • Campbell, J. A. and Steele-Mallory, B. A. (1979) Uranium in the Cutler Formation, Lisbon Valley, Utah: in Permian-land, Guidebook to the 9th Field Conf., D. L. Baars, ed., Four Corners Geol. Soc., Durango, Colorado, 23–32.

    Google Scholar 

  • Earley, J. W., Brindley, G. W., McVeagh, W. J., and Vanden Heuvel, R. C. (1956) Montmorillonite-chlorite: Amer. Mineral. 41, 258–267.

    Google Scholar 

  • Frank-Kamenetsky, V. A., Logvineko, N. V., and Drits, V. A. (1963) Tosudite—A new mineral forming the mixed-layer phase in alushite: in Proc. Int. Clay Conf., Stockholm, Sweden, 1963, Vol. 2, I. Th. Rosenqvist and P. Graff-Petersen, eds., Pergamon Press, Oxford, 181–186.

    Google Scholar 

  • Furbish, W. J. (1975) Corrensite of deuteric origin: Amer. Mineral. 60, 928–930.

    Google Scholar 

  • Garrels, R. M. and Thompson, M. E. (1962) A chemical model for sea water at 25°C and one atmosphere total pressure: Amer. J. Science 260, 57–66.

    Article  Google Scholar 

  • Grim, R. E., Droste, J. B., and Bradley, W. F. (1960) A mixed-layer clay mineral associated with an evaporite: in Clays and Clay Minerals, Proc. 8th Natl. Conf, Norman, Oklahoma, 1959, Ada Swineford, ed., Pergamon Press, New York, 228–236.

    Google Scholar 

  • Hanshaw, B. B. and Hill, G. A. (1969) Geochemistry and hydrodynamics of the Paradox basin region, Utah, Colorado, and New Mexico: Chem. Geol. 4, 263–294.

    Article  Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Amer. J. Science 278-A, 1–229.

    Google Scholar 

  • Jackson, M. L. (1969) Soil Chemical Analysis—Advanced Course, 2nd ed., published by the author, Madison, Wisconsin, 895 pp.

    Google Scholar 

  • Johnson, L. J. (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil: Amer. Mineral. 49, 556–572.

    Google Scholar 

  • Kopp, O. C. and Fallis, S. M. (1974) Corrensite in the Wellington Formation, Lyons, Kansas: Amer. Mineral. 59, 623–624.

    Google Scholar 

  • Kubler, B. (1973) La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment: Bull. Centre Rech. Pau SNAP 7, 543–556.

    Google Scholar 

  • Lippman, F. (1954) Über einen Keuperton von Zaiser-sweiker bei Maulbroon: Heidi. Beitr. Mineral. Petrog. 4, 130–134.

    Google Scholar 

  • Mack, G. H. and Rasmussen, K. A. (1984) Alluvial-fan sedimentation of the Cutler Formation (Permo-Pennsylvanian) near Gateway, Colorado: Geol. Soc. Amer. Bull. 95, 109–116.

    Article  Google Scholar 

  • McCulley, B. L., Thackston, J. W., and Preslo, L. M. (1984) Status report: Geochemical interactions between ground water and Paleozoic strata, Gibson dome area, southeastern Utah: Unnumbered BMI/ONWI topical report, prepared by Woodwood-Clyde Consultants for Battelle Memorial Institute, Office of Nuclear Waste Isolation, Columbus, Ohio, 78 pp.

    Google Scholar 

  • Millot, G. and Camez, T. (1963) Genesis of vermiculite and mixed-layer vermiculite in the evolution of the soil of Franc: in Clays and Clay Minerals, Proc. 10th Natl. Conf, Austin, Texas, 1961, Ada Swineford and D. C. Franks, eds., Pergamon Press, New York, 90–95.

    Google Scholar 

  • Morrison, S. J. and Parry, W. T. (1986) Formation of carbonate-sulfate veins associated with copper ore deposits from saline basin brines, Lisbon Valley, Utah: Fluid inclusion and isotope evidence: Econ. Geol. 81 (in press).

    Article  Google Scholar 

  • Pacquet, A. (1968) Analcime et argiles diagénétiques dans les formations sédimentaires de la région d’Agades (Republic du Niger): Mem. Serv. Carte Geol. Als.-Lorr. 27, 221 pp.

  • Parker, J. M. (1968) Lisbon field area, San Juan County, Utah: in Natural Gases of North America, Vol. 2, W. B. Beebe, ed., Amer. Assoc. Petrol. Geol. Memoir 9, 1371–1388.

    Google Scholar 

  • Peterson, M. N. A. (1961) Expandable chloritic clay minerals from upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee: Amer. Mineral. 46, 1245–1269.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., and Siever, R. (1973) Sand and Sandstone: Springer-Verlag, New York, 618 pp.

    Book  Google Scholar 

  • Reynolds, R. C. (1980) Interstratified clay minerals: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Soc., London, 249–304.

    Google Scholar 

  • Reynolds, R. C. (1983) Calculation of absolute diffraction intensities for mixed-layered clays: Clays & Clay Minerals 31, 233–234.

    Article  Google Scholar 

  • Senkayi, A. L., Dixon, J. B., and Hossner, L. R. (1981) Transformation of chlorite to smectite through regularly interstratified intermediates: Soil Sci. Soc. Amer. J. 45, 650–656.

    Article  Google Scholar 

  • Shimoda, S. (1969) New data for tosudite: Clays & Clay Minerals 17, 179–184.

    Article  Google Scholar 

  • Suchecki, R. K., Perry, E. A., and Hubert, J. F. (1977) Clay petrology of Cambro-Ordivician continental margin, Cow Head klippe, western Newfoundland: Clays & Clay Minerals 25, 163–170.

    Article  Google Scholar 

  • Sudo, T. and Hayashi, H. (1956) Types of mixed-layer minerals from Japan: in Clays and Clay Minerals, Proc. 4th Natl. Conf, University Park, Pennsylvania, 1955, Ada Swineford, ed., Natl. Acad. Sci. Natl. Res. Counc. Publ. 456, Washington, D.C., 389–412.

    Google Scholar 

  • Sudo, T. and Kodama, H. (1957) An aluminum mixed-layer mineral of montmorillonite-chlorite: Z. Kristallogr. 109, 379–387.

    Article  Google Scholar 

  • Sudo, T., Takahashi, H., and Matsui, H. (1954) Long spacing of 30 Å from a fireclay: Nature 173, 161.

    Article  Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 1101–1116.

    Article  Google Scholar 

  • Tompkins, R. E. (1981) Scanning electron microscopy of a regular chlorite/smectite (corrensite) from a hydrocarbon reservoir sandstone: Clays & Clay Minerals 29, 233–235.

    Article  Google Scholar 

  • Truesdell, A. H. and Jones, B. F. (1974) WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Research, U.S. Geol. Surv. 2, 233–248.

    Google Scholar 

  • Velde, B. (1977) Clays and Clay Minerals in Natural and Synthetic Systems: Elsevier, Amsterdam, 218 pp.

    Google Scholar 

  • Weaver, C. E. (1984) Origin and geologic implications of the palygorskite deposits of S.E. United States: in Palygor-skite-Sepiolite Occurrence, Genesis and Uses, A. Singer and E. Galan, eds., Elsevier, Amsterdam, 39–58.

    Google Scholar 

  • Weaver, C. E., Conner, T. G., and Padlan, A. (1982) Geochemistry of Salt No. 6, Gibson dome, Utah, status report, November 1982: Unnumbered BMI/ONWI topical report from Georgia Institute of Technology to Office of Nuclear Waste Isolation, Columbus, Ohio, 47 pp.

    Google Scholar 

  • Wood, H. B. (1968) Geology and exploitation of uranium deposits in the Lisbon Valley area, Utah: in Ore Deposits of the United States, 1933–1967, J. D. Ridge, ed., American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 770–789.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, S.J., Parry, W.T. Dioctahedral Corrensite from Permian Red Beds, Lisbon Valley, Utah. Clays Clay Miner. 34, 613–624 (1986). https://doi.org/10.1346/CCMN.1986.0340601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1986.0340601

Key Words

Navigation