Skip to main content
Log in

High-Resolution Imaging of Ordered Mixed-Layer Clays

  • Published:
Clays and Clay Minerals

Abstract

High-resolution transmission electron microscopy (HRTEM) has been used to examine illite/smectite from the Mancos Shale; rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa Formation. Thin specimens were prepared by ion milling, ultramicrotome sectioning, and/or grain dispersal on a holey carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method for HRTEM imaging of expanded smectite (d (001) = 16 Å) which could then be distinguished from unexpanded illite (d (001) = 10 Å). Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed a 26-Å periodicity. These data support X-ray powder diffraction (XRD) studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10-Å and 14-Å basal spacings corresponding to collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite layers were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to more than five layers. For all illite, smectite, and illite/ smectite particles examined, crystallite sizes of about 20 Å in the basal dimension were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H. and Peacor, D. R. (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments: Clays & Clay Minerals 33, 228–236.

    Article  Google Scholar 

  • Ahn, J. H. and Peacor, D. R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition: Clays & Clay Minerals 34, 165–179.

    Article  Google Scholar 

  • Amouric, M., Mercuriot, G., and Baronnet, A. (1981) On computed and observed HRTEM images of perfect mica polytypes: Bull. Mineral. 104, 298–313.

    Google Scholar 

  • Barber, D. J. (1970) Thin foils of non-metals made for electron microscopy by sputter etching: J. Mater. Sci. 5, 1–8.

    Article  Google Scholar 

  • Bethke, C. M. and Altaner, S. P. (1986) A layer-by-layer mechanism of smectite illitization and its application to a new rate law: Clays & Clay Minerals 34, 136–145.

    Article  Google Scholar 

  • Brindley, G. W. and Brown G. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification: Mineralogical Society Monograph No. 5, Mineralogical Society, London, 495 pp.

    Book  Google Scholar 

  • Brown, J. L. and Jackson, M.L. (1973) Chlorite examination by ultramicrotomy and high resolution electron microscopy: Clays & Clay Minerals 21, 1–7.

    Article  Google Scholar 

  • Eberhart, J. P. (1981) High resolution electron microscopy applied to clay minerals: in Advanced Techniques for Clay Mineral Analysis, J. J. Fripiat, ed., Elsevier, Amsterdam, 31–50.

    Google Scholar 

  • Eberhart, S. P. and Triki, R. (1972) Description d’une technique permetant d’obtenir des coupes minces de minéraux argileux par ultramicrotomie. Application à l’étude des minéraux argileux interstratifiés: J. Microscopie 15, 111–120.

    Google Scholar 

  • Eberl, D. D. (1978) The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations: Geochim. Cosmochim. Acta 42, 1–7.

    Article  Google Scholar 

  • Eberl, D. D. and Hower, J. (1976) Kinetics of illite formation: Geol. Soc. Amer. Bull. 87, 1327–1330.

    Article  Google Scholar 

  • Eggleton, R. A. (1984) Formation of iddingsite rims on olivine: a transmission electron microscope study: Clays & Clay Minerals 32, 1–11.

    Article  Google Scholar 

  • Eggleton, R. A. and Buseck, P. R. (1980) High resolution electron microscopy of feldspar weathering: Clays & Clay Minerals 28, 173–178.

    Article  Google Scholar 

  • Garrels, R. M. (1984) Montmorillonite/illite stability diagrams: Clays & Clay Minerals 32, 161–166.

    Article  Google Scholar 

  • Hower, J. (1981a) X-ray identification of mixed-layer clay minerals: in Clays and the Resource Geologist, F. J. Longstaffe, ed., Mineralogical Association of Canada Short Course Notes, Calgary, Alberta, 39–59.

    Google Scholar 

  • Hower, J. (1981b) Shale diagenesis: in Clays and the Resource Geologist, F. J. Longstaffe, ed., Mineralogical Association of Canada Short Course Notes, Calgary, Alberta, 60–80.

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence: Geol. Soc. Amer. Bull. 87, 725–737.

    Article  Google Scholar 

  • Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonite: Amer. Mineral. 51, 825–854.

    Google Scholar 

  • Iijima, S. and Buseck, P. R. (1978) Experimental study of disordered mica structures by high-resolution electron microscopy: Acta Crystallogr. A34, 709–719.

    Article  Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1982) In-terlayer hydrates and complexes of clay minerals observed by electron microscopy using an environmental cell: in Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniate, eds., Elsevier, Amsterdam, 373–384.

    Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates: in Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1, L. Heller, ed., Israel Univ. Press, Jerusalem, 61–80.

    Google Scholar 

  • Lee, J. H., Ahn, J. H., and Peacor, D. R. (1985) Textures in layered silicates: progressive changes through diagenesis and low temperature metamorphism: J. Sed. Petrol. 55, 532–590.

    Google Scholar 

  • Mackinnon, I. D. R. and Buseck, P. R. (1979) New phyllosilicate types in a carbonaceous chondrite matrix: Nature 280, 219–220.

    Article  Google Scholar 

  • McKee, T. R. and Brown, J. L. (1977) Preparation of specimens for electron microscopic examination: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 809–841.

    Google Scholar 

  • McKee, T. R. and Buseck, P. R. (1978) HRTEM observations of stacking and ordered interstratification in rectorite: Proc. 9th Int. Cong. Electron Micros. 1, 272–273.

    Google Scholar 

  • McKee, T. R., Dixon, J. B., Whitehouse, M. G., and Harling, D. F. (1973) Study of TePuke halloysite by a high resolution electron microscope: in Proc. 31st Ann. Meet. Electron Microscopy Soc. Amer. C. J. Arceneaux, ed., Baton Rouge, Louisiana, 200–201.

    Google Scholar 

  • Miser, H. D. and Milton, C. (1964) Quartz, rectorite, and cookeite from the Jeffrey quarry near North Little Rock, Pulaski County, Arkansas: Arkansas Geolog. Commission Bull. 21, 29 pp.

  • Nadeau, P. H. and Reynolds, R. C., Jr. (1981) Burial and contact metamorphism in the Mancos Shale: Clays & Clay Minerals 29, 249–259.

    Article  Google Scholar 

  • Nadeau, P. H., Tait, J. M., McHardy, W. J., and Wilson, M. J. (1984a) Interstratified XRD characteristics of physical mixtures of elementary clay particles: Clay Miner. 19, 67–76.

    Article  Google Scholar 

  • Nadeau, P. H., Wilson, M. J., McHardy, W. J., and Tait, J. M. (1984b) Interstratified clays as fundamental particles: Science 225, 923–925.

    Article  Google Scholar 

  • O’Keefe, M. A., Buseck, P. R., and Iijima, S. (1978) Computed crystal structure images for high resolution electron microscopy: Nature 274, 322–324.

    Article  Google Scholar 

  • Page, R. and Wenk, H. R. (1979) Phyllosilicate alteration of plagioclase studied by transmission electron microscopy: Geology 7, 393–397.

    Article  Google Scholar 

  • Paulus, M., Dubon, A., and Etienne, J. (1975) Application of ion-thinning to the study of the structure of argillaceous rocks by transmission electron microscopy: Clay Miner. 10, 417–426.

    Google Scholar 

  • Phakey, P. P., Curtis, C. D., and Oertel, G. (1972) Transmission electron microscopy of fine-grained phyllosilicates in ultra-thin rock sections: Clays & Clay Minerals 20, 193–197.

    Article  Google Scholar 

  • Reynolds, R. C., Jr. (1967) Interstratification of clay systems: calculation of the total one-dimensional diffraction function: Amer. Mineral. 52, 661–672.

    Google Scholar 

  • Reynolds, R. C. and Hower, J. (1970) The nature of inter-layering in mixed-layer illite-montmorillonites: Clays & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Roberson, H. E. and Lahann, R. W. (1981) Smectite to illite conversion rates: effects of solution chemistry: Clays & Clay Minerals 29, 129–135.

    Article  Google Scholar 

  • Ruehlicke, G. and Kohler, E. E. (1981) A simplified procedure for determining layer charge by the N-alkylammonium method: Clay Miner. 16, 305–307.

    Article  Google Scholar 

  • Spence, J. C. H. (1981) Experimental High-Resolution Electron Microscopy: Clarendon Press, Oxford, 370 pp.

    Book  Google Scholar 

  • Spinnler, G. E., Self, P. G., Iijima, S., and Buseck, P. R. (1984) Stacking disorder in clinochlore chlorite: Amer. Mineral. 69, 252–263.

    Google Scholar 

  • Spurr, A. R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy: Ultrastructure Res. 26, 31–43.

    Article  Google Scholar 

  • Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction: Clays & Clay Minerals 28, 401–411.

    Article  Google Scholar 

  • Srodon, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite: Clay Miner. 16, 297–304.

    Article  Google Scholar 

  • Srodon, J. (1984) X-ray powder diffraction identification of illitic materials: Clays & Clay Minerals 32, 337–349.

    Article  Google Scholar 

  • Tchoubar, C., Rautureau, M., Clinard, C., and Ragot, J. P. (1973) Technique d’inclusion appliquée à l’étude des silicates lamellaires et fibreux: J. Microscopie 18, 147–154.

    Google Scholar 

  • Tessier, D. and Pedro, G. (1982) Electron microscopy study of Na smectite fabric—role of layer charge, salt concentration and suction parameters: in Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 165–176.

    Google Scholar 

  • van Olphen, H. and Fripiat, J. J. (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals: Pergamon Press, Oxford, 346 pp.

    Google Scholar 

  • Veblen, D. R. (1983) Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite and kaolinite: Amer. Mineral. 68, 566–580.

    Google Scholar 

  • Yoshida, T. (1973) Elementary layers in the interstratified clay minerals as revealed by electron microscopy: Clays & Clay Minerals 21, 413–420.

    Article  Google Scholar 

  • Yoshida, T. and Suito, E. (1972) Interstratified layer structure of the organo-montmorillonites as revealed by electron microscopy: J. Appl. Crystallogr. 5, 119–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimentidis, R.E., MacKinnon, I.D.R. High-Resolution Imaging of Ordered Mixed-Layer Clays. Clays Clay Miner. 34, 155–164 (1986). https://doi.org/10.1346/CCMN.1986.0340206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1986.0340206

Key Words

Navigation