Skip to main content
Log in

Raman Spectroscopic Study of Kaolinite in Aqueous Suspension

  • Published:
Clays and Clay Minerals

Abstract

The vibrational modes of clay minerals in aqueous suspension are uniquely accessible to Raman spectroscopy, but this potentially powerful approach has not been applied heretofore to study clays in aqueous samples. In this paper, Raman spectra in the 100- to 4000-cm−1 region were obtained for kaolinite in aqueous suspension and in air-dry samples. Contact with water perturbed the low-wavenumber Raman spectrum (100 to 1000 cm−1) significantly with respect to relative band intensities and resulted in a pH dependence of the integrated intensity in the OH-stretching region. Comparison of the Raman and infrared (IR) spectra of air-dry kaolinite samples confirmed five Raman-active OH-stretching modes at 3621, 3652, 3668, 3688, and 3696 cm−1, in contrast to four IR-active modes at 3621, 3652, 3668, and 3695 cm−1. The Raman spectra of two kaolinites of different origin showed differences in band positions and intensities. These results suggest that Raman spectroscopy may provide a useful method to study clay mineral-water interactions, colloidal behavior in clay suspensions, and variations in clay mineral structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M. (1983) Hydrogen atom positions in kaolinite by neutron profile refinement: Clays & Clay Minerals 31, 352–356.

    Article  Google Scholar 

  • Bevington, P. R. (1977) Data Reduction and Error Analysis for the Physical Sciences: McGraw-Hill, New York, 237–245.

    Google Scholar 

  • Estep, P. A., Kouach, J. J., and Karr, C. (1968) Quantitative infrared multicomponent determinations of minerals in coal: Anal. Chem. 40, 358–363.

    Article  Google Scholar 

  • Farmer, V. C. (1974) The layer silicates: Ch. 15 in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 331–363.

    Chapter  Google Scholar 

  • Giese, R. F., Jr. (1982) Theoretical studies of the kaolin minerals: electrostatic calculations: Bull. Soc. Fr. Mineral. Crystallogr. 105, 417–424.

    Google Scholar 

  • Ishii, M., Shimanouchi, T., and Nakahira, M. (1967) Far infra-red absorption spectra of layer silicates: Inorg. Chim. Acta 1, 387–392.

    Article  Google Scholar 

  • Johnston, C. T. (1983) A Raman spectroscopic study of kaolinite: Ph.D. dissertation, Univ. California, Riverside, California, 71–78.

    Google Scholar 

  • Johnston, C. T., Sposito, G., Bocian, D. F., and Birge, R. R. (1984) Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsulfoxide complex: J. Phys. Chem. 88, 5959–5964.

    Article  Google Scholar 

  • Kerr, P. F. (1951) Preliminary Reports, Reference Clay Minerals, American Petroleum Institute Project No. 49: American Petroleum Institute, Columbia University, New York, 146 pp.

    Google Scholar 

  • Larson, S. J., Pardoe, G. W. F., Gebbie, H. A., and Larson, E. E. (1972) The use of far infrared interferometric spectroscopy for mineral identification: Amer. Mineral. 57, 998–1002.

    Google Scholar 

  • Ledoux, R. L. and White, J. L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature: Science 145, 47–49.

    Article  Google Scholar 

  • Maddams, W. F. and Mead, M. L. (1982) The measurement of derivative IR spectra. I. Background studies: Spectro-chimica Acta 38A, 437–444.

    Article  Google Scholar 

  • Prost, R. (1984) Etude par spectroscopie infrarouge à basse température des groupes OH de structure de la kaolinite, de la dickite et de la nacrite: Agronomie 4, 403–406.

    Article  Google Scholar 

  • Rand, R. and Melton, I. E. (1975) Isoelectric point of the edge surface of kaolinite: Nature 257, 214–216.

    Article  Google Scholar 

  • Rouxhet, P. G., Samudacheata, N., Jacobs, H., and Anton, O. (1977) Attribution of the OH stretching bands of kaolinite: Clay Miner. 12, 171–178.

    Article  Google Scholar 

  • Schofield, R. K. and Samson, H. R. (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces: Disc. Faraday Soc. 18, 138–145.

    Article  Google Scholar 

  • Suitch, P. R. and Young, R. A. (1983) Atom positions in highly ordered kaolinite: Clays & Clay Minerals 31, 357–366.

    Article  Google Scholar 

  • van Olphen, H. and Fripiat, J.J. (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals: Pergamon Press, New York, 346 pp.

    Google Scholar 

  • Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy: Clay Miner. 7, 51–56.

    Article  Google Scholar 

  • White, J. L., Laycock, A., and Cruz, M. (1970) Infrared studies of proton delocalization in kaolinite: Bull. Groupe Franc. Argiles 22, 157–165.

    Article  Google Scholar 

  • Wiewiora, A., Wieckowski, T., and Sokolowska, A. (1979) The Raman spectra of kaolinite sub-group minerals and of pyrophyllite: Arch. Mineral. 135, 5–14.

    Google Scholar 

  • Wilson, E. B., Decius, J. C., and Cross, P. C. (1955) Molecular Vibrations: McGraw-Hill, New York, 34–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, C.T., Sposito, G. & Birge, R.R. Raman Spectroscopic Study of Kaolinite in Aqueous Suspension. Clays Clay Miner. 33, 483–489 (1985). https://doi.org/10.1346/CCMN.1985.0330602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1985.0330602

Key Words

Navigation