Skip to main content
Log in

Feldspar Weathering in Lateritic Saprolite

  • Published:
Clays and Clay Minerals

Abstract

Feldspars in granitic saprolite in southwestern Australia have altered to halloysite, kaolinite, and gibbsite with no evidence of noncrystalline material. The secondary minerals are commonly present as intimate mixtures within altered feldspar grains, but discrete zones of gibbsite or halloysite-kaolinite also are present. Variations in the chemical microenvironment within micrometer-size zones in grains apparently controlled the type and distribution of secondary minerals. The alteration of both plagioclase and alkali feldspars involved congruent dissolution by soil solution and crystallization of halloysite, kaolinite, and gibbsite from this solution. Highly altered feldspar grains consist of etched feldspar fragments embedded within a highly porous framework of subhedral to euhedral platy crystals of kaolinite and gibbsite, or of spherical and felted aggregates of halloysite.

Резюме

Фельдшпаты в гранитовом сапролите в юго-западной Австралии изменялись в галлуазит, каолинит и гиббсит, без доказательства присутствия некристаллических материалов. Вторичные минералы находятся обычно как внутренные смеси в зернах фельдшпата, но дискретные зоны гиббсита или галлуазита-каолинита также присутствуют. Перемены в химическом микроокружении внутри микроскопических зон в зернах, кажется, контролируют тип и расположение вторичных минералов. Видоизменение обоих плагиоклаза и щелочных фельдшпатов включало соответственно растворение в почвенном растворе и кристаллизацию галлуазита, каолинита, и гиббеита из этого раствора. Значительно видоизмененные зерна фельдшпата состоят из изъеденных фрагментов фельдшпата, окруженных сильно пороватой сетью субгедральных до евгедральных плоских кристаллов каолинита и гиббеита, либо сферических и войлочных аггрегатов галлуазита. [E.G.]

Resümee

Die Feldspäte in einem granitischen Rückstandsgestein von SW-Australien haben sich in Halloysit, Kaolinit, und Gibbsit umgewandelt, wobei es keinen Hinweis für nichtkristallisierte Substanzen gibt. Die sekundären Minerale treten meist eng vermischt in umgewandelten Feldspatkörnern auf. Es gibt jedoch auch begrenzte Zonen, in denen Gibbsit oder Halloysit-Kaolinit getrennt auftreten. Variationen im chemischen Mikrobereich innerhalb von Mikrometer-großen Zonen in den Körnern kontrollieren offensichtlich die Art und Verteilung der Sekundärminerale. Die Umwandlung von Plagioklas und Alkalifeldspat umfaßt konkruente Auflösung durch Bodenlösung und die Kristallisation von Halloysit, Kaolinit und Gibbsit aus dieser Lösung. Stark umgewandelte Feldspatkörner bestehen aus angelösten Feldspatfragmenten, die in einem stark porösen Gerüst aus hypidiomorphen bis idiomorphen tafeligen Kristallen von Kaolinit und Gibbsit liegen oder in einem Gerüst aus kugeligen und dichten Aggregaten von Halloysit eingebettet sind. [U.W.]

Résumé

Des feldspars dans de la saprolite granitique en Australie du sud-ouest se sont altérés en halloysite, kaolinite et gibbsite, sans évidence de matériel non-cristallin. Les minéraux secondaires sont communément présents en tant que mélanges intimes au sein de grains de feldspar altéres, mais des zones discrètes de gibbsite ou d’halloysite-kaolinite sont également présentes. Des variations dans le microen-vironement chimique au sein de zones de taille micrométrique dans les grains ont apparemment contrôlé le type et la distribution de minéraux secondaires. L’altération à la fois de plagioclase et de feldspars alkalins a impliqué la dissolution congruente de solution de sol et la cristallisation d’halloysite, de kaolinite et de gibbsite à partir de cette solution. Les grains de feldspar fort altérés consistent en des fragments gravés de feldspar enfoncés au sein d’une matrice très poreuse de cristaux sousédraux à euédraux de kaolinite et de gibbsite, ou d’aggrégats sphériques et feutrés d’halloysite. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agar, A.W. (1967) Operation of the electronmicroscope: in Techniques for Electron Microscopy, D. Kay, ed., Blackwell Scientific Publications, Oxford, 1–43.

    Google Scholar 

  • Berner, R. A. and Holdren, G. R., Jr. (1977) Mechanism of feldspar weathering. I. Some observational evidence: Geology 5, 369–372.

    Article  Google Scholar 

  • Berner, R. A. and Holdren, G. R., Jr. (1979) Mechanism of feldspar weathering. II. Observations of feldspars from soils: Geochim. Cosmochim. Acta 43, 1173–1186.

    Article  Google Scholar 

  • Diamond, S. and Bloor, J. W. (1970) Globular cluster microstructure and endellite (hydrated halloysite) from Bedford, Indiana: Clays & Clay Minerals 18, 309–312.

    Article  Google Scholar 

  • Eggleton, R. A. and Buseck, P. R. (1980) High resolution electron microscopy of feldspar weathering: Clays & Clay Minerals 28, 173–178.

    Article  Google Scholar 

  • Eswaran, H. and Bin, W. C. (1978) A study of a deep weathering profile on granite in Peninsular Malaysia. III. Alteration of feldspars: Soil Sci. Soc. Amer. J. 42, 154–158.

    Article  Google Scholar 

  • Eswaran, H., Stoops, G., and Sys, C. (1977) The micro-morphology of gibbsite forms in soils: J. Soil Sci. 28, 136–143.

    Article  Google Scholar 

  • Exley, C.S. (1976) Observations on the formation of kaolinite in the St. Austell granite, Cornwall: Clay Miner. 11, 51–63.

    Article  Google Scholar 

  • Gandolfi, G. (1967) Discussion upon methods to obtain X-ray powder patterns from a single crystal: Min. Petrogr. Acta 13, 67–74.

    Google Scholar 

  • Garrels, R. M. and Christ, L. L. (1965) Solutions, Minerals and Equilibria: Harper and Row, New York, 450 pp.

    Google Scholar 

  • Gilkes, R. J., Scholz, G., and Dimmock, G. M. (1973) Lateritic deep weathering of granite: J. Soil Sci. 24, 523–536.

    Article  Google Scholar 

  • Gilkes, R. J. and Suddhiprakarn, A. (1980) Scanning electron microscope morphology of deeply weathered granite: Clays & Clay Minerals 28, 29–34.

    Article  Google Scholar 

  • Honjo, G., Kitamura, N., and Mihama, K. (1954) Study of clay minerals by single crystal electron diffraction diagrams—the structure of tubular kaolin: Clay Min. Bull. 2, 131–141.

    Article  Google Scholar 

  • Hughes, J. C. and Brown, J. (1977) Two unusual minerals in a Nigerian soil. (1) Fibrous kaolin. (2) Bastnaesite: Clay Miner. 12, 319–329.

    Article  Google Scholar 

  • Keller, W. D. (1978) Kaolinization of feldspar as displayed in scanning electron micrographs: Geology 6, 184–188.

    Article  Google Scholar 

  • Lodding, W. (1972) Conditions for the direct formation of gibbsite from K-feldspar—discussion: Amer. Mineral. 57, 292–294.

    Google Scholar 

  • Lunderstrom, I. (1970) Etch pattern and albite twinning in two plagioclases: Ark. Mineral. Geol. 5, 63–91.

    Google Scholar 

  • Parham, W.E. (1969) Formation of halloysite from feldspar: low temperature artificial weathering versus natural weathering: Clays & Clay Minerals 17, 13–22.

    Article  Google Scholar 

  • Peck, A. J., Williamson, D. R., Hurle, D. H., Yendle, P. A., and Trotter, C. (1982) Groundwater observations in the Darling Range, Western Australia: CSIRO Div. Land Resources Management Tech. Memo, 1–7.

    Google Scholar 

  • Rich, C. I. (1972) Potassium in soil minerals: in Potassium in Soil, Proc. 9th Coll. Intern. Potassium Inst., Landshut/Federal Republic of Germany, (edited by International Potash Institute), 15–31.

    Google Scholar 

  • Sadleir, S. B. and Gilkes, R. J. (1976) Development of bauxite in relation to parent material near Jarrahdale, Western Australia: J. Geol. Soc. Aust. 23, 333–344.

    Article  Google Scholar 

  • Tardy, Y., Bocquier, G., Paquet, H., and Millot, G. (1973) Formation of clay from granite and its distribution in relation to climate and topography: Geoderma 10, 271–284.

    Article  Google Scholar 

  • Tazaki, K. (1976) Scanning electron microscopic study of formation of gibbsite from plagioclase: Paper Inst, for Thermal Spring Research, Okayama Univ. No. 45, 11–24.

    Google Scholar 

  • Wilke, B. S., Schwertmann, U., and Murad, E. (1978) An occurrence of polymorphic halloysite in granite saprolite of the Bayerischer Wald, Germany: Clay Miner. 13, 67–77.

    Article  Google Scholar 

  • Wilson, M.J. (1975) Chemical weathering of some primary rock-forming minerals: Soil Sci. 119, 349–355.

    Article  Google Scholar 

  • Wilson, M. J., Bain, D. C., and McHardy, W. J. (1971) Clay mineral formation in a deeply weathered boulder conglomerate in North-East Scotland. Clays & Clay Minerals 19, 345–352.

    Article  Google Scholar 

  • Wilson, M. J. and McHardy, W. J. (1980) Experimental etching of a microcline perthite and implications regarding natural weathering: J. Microscopy 120, 291–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R.R., Gilkes, R.J., Armitage, T.M. et al. Feldspar Weathering in Lateritic Saprolite. Clays Clay Miner. 33, 31–43 (1985). https://doi.org/10.1346/CCMN.1985.0330104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1985.0330104

Key Words

Navigation