Skip to main content
Log in

Regular Solution Site-Mixing Model for Chlorites

  • Published:
Clays and Clay Minerals

Abstract

Activity expressions are presented for a six end-member, regular solution, site-mixing model for chlorites. The end members are ideal 14-Å chlorites for which experimental stability data are lacking. Estimates were made of the standard state 25°C and 1 bar molar 3rd law entropies, volumes, and the Maier-Kelley heat capacity coefficients. Experimental stability data from the literature for 14-Å chlorites were used with different sets of exchange energies, for cations on adjacent sites, to compute estimates of the standard state chemical potentials of the end members at 25°C and 1 bar. More experimental data are needed for an adequate definition of the exchange energies and the standard state chemical potentials. The model was applied to diagenesis in clastic reservoirs. Aqueous activity ratios of Mg2+:Fe2+ were computed as an equilibrium function of the corresponding molar ratios in authigenic chlorites. The aqueous activity ratio was independent of the chlorite Al content at a constant molar ratio of Mg2+:Fe2+ in the chlorite. The model predicts a wide range of molar Mg2+:Fe2+ ratios in authigenic chlorites in equilibrium with reservoir fluids. Trends in these molar ratios should be independent of the Al content in the chlorites. The model can be applied directly to 7-Å chlorites when experimental data become available to estimate the various thermodynamic parameters of the 7-Å end members.

Резюме

Представлены выражения для активности для модели хлоритов, основанной на шести конечных членах и регулярном растворе. Конечные члены являются идеальными 14 Å хлоритами, для которых экспериментальные данные по стабильности не имеются. Оценивались молярные энтропие (3 закон), объемы и коэффициенты теплоемкости Майера-Келлея для стандартного состояния 25°С и 1 бара. Экспериментальные данные по стабильности, имеющиеся в литературе для 14 Å хлоритов, использовались с различными энергиями обмена соседних катионов для расчета химических потенциалов конечных членов при стандартном состоянии 25°С и 1 бара. Однако для соответствующего определения энергий обмена и химических потенциалов при стандартном состоянии необходимы дополнительные экспериментальные данные. Эта модель применялась для диагенеза в кластических резервуарах. Рассчитывались отношения водных активностей Mg2+:Fe2+ как функции равновесия соответствующих молярных отношений в аутигенных хлоритах. При постоянном молярном отношении Mg2+:Fe2+ в хлорите отношение водных активностей не зависило от содержания Al в этом минерале. Эта модель предсказывает широкий диапазон значений молярных отношений Mg2+:Fe2+ в аутигенных хлоритах в равновесии с жидкостями резервуара. Тенденции изменений этих молярных отношений не должны зависеть от содержания Al в хлорите. Модель может непоердственно применяться к 7 Å хлоритам, если имеются экспериментальные данные для определения различных термодинамических параметров 7 Å конечных членов. [E.G.]

Resümee

Aktivitätsausdrücke werden für ein sechs Endglieder enthaltendes, reguläres Lösungs-Platz-mischungsmodell für Chlorite angegeben. Die Endglieder sind ideale 14-Å Chlorite, für die es keine experimentellen Stabilitätsdaten gibt. Es wurden Schätzungen für den Standardzustand der molaren (3. Hauptsatz-)Entropie bei 25°C und 1 Bar, das Volumen, und die Maier-Kelley Wärmekapazitätskoeffi-zienten gemacht. Experimentelle Stabilitätsdaten aus der Literatur für 14-Å Chlorite wurden zusammen mit verschiedenen Austauschenergien für Kationen auf benachbarten Plätzen verwendet, um Schätzungen für die Standardzustände der chemischen Potentiale der Endglieder bei 25°C und 1 Bar zu berechnen. Es werden mehr experimentelle Daten für eine angemessene Definition der Austauschenergien und der Standardzustände der chemischen Potentiale benötigt. Das Modell wurde auf die Diagenese in klastischen Bereichen angewandt. Das Aktivitätsverhältnis in wässriger Lösung war bei einem konstanten molaren Mg2+:Fe2+-Verhältnis im Chlorit unabhängig vom Al-Gehalt des Chlorites. Das Modell sagt einen großen Bereich von molaren Mg2+:Fe2+-Verhältnissen in authigenen Chloriten voraus, die im Gleichgewicht mit den Vorratslösungen sind. Trends in diesen molaren Verhältnissen sollten unabhängig vom Al-Gehalt der Chlorite sein. Das Modell kann direkt auf 7-Å Chlorite angewendet werden, wenn experimentelle Daten zur Vergügung stehen, um die verschiedenen thermodynamischen Parameter der 7-Å Endglieder abzuschätzen. [U. W.]

Résumé

On présente des expressions d’activité pour un modèle à 6 membres terminaux, à solution regulière, et à sites mélangés pour des chlorites. Les membres terminaux sont des chlorites idéales de 14 Å pour lesquelles des données expérimentales de stabilité manquent. On a estimé les entropies de 3eme loi, les volumes, et les coefficients de capacité de rétention de chaleur de Maier-Kelley pour l’état standard à 25°C et 1 bar molaire. Les données expérimentales de stabilité trouvées dans la littérature pour des chlorites de 14 Å ont été utilisées avec différents ensembles d’énergies d’échange, pour des cations sur des sites adjacents, pour computer des estimations de potentiels chimiques à l’état standard des membres terminaux à 25°C et 1 bar. Le modèle a été appliqué à la diagénèse dans des reservoirs élastiques. On a computé les proportions d’activité aqueuse pour Mg2+:Fe2+ en tant que fonction d’équilibre des proportions molaires correspondantes dans des chlorites authigéniques. La proportion d’activité aqueuse était indépendante du contenu en chlorite Al pour une proportion molaire constante de Mg2+:Fe2+ dans la chlorite. Le modèle prédit une large gamme de proportions molaires Mg2+:Fe2+ dans des chlorites authigéniques en équilibre avec les fluides du réservoir. Les tendances dans ces proportions molaires devraient être indépendantes du contenu en Al des chlorites. Le modèle pourra être directement appliqué à des chlorites de 7 Å lorsque l’on aura des données expérimentales pour estimer les paramètres thermodynamiques variés de membres terminaux de 7 Å [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, P. and Helgeson, H. C. (1983) Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays: Clays & Clay Minerals 31, 207–217.

    Article  Google Scholar 

  • Alford, E. V. (1983) Compositional variations of authigenic chlorites in the Tuscaloosa Formation, Upper Cretaceous, of the Gulf Coast Basin: M.S. thesis, Univ. New Orleans, New Orleans, Louisiana, 66 pp.

    Google Scholar 

  • Bailey, S. W. and Brown, B. E. (1962) Chlorite polytypism: 1. Regular and semi-random one-layer structures: Amer. Mineral. 47, 819–850.

    Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock Forming Minerals. Vol. 3 Sheet Silicates: Longman, Hong Kong, 270 pp.

    Google Scholar 

  • Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geol. Surv. Prof. Pap. 414-A, A1–A27.

    Google Scholar 

  • Guggenheim, E. A. (1952) Mixtures: Clarendon Press, Oxford, 270 pp.

    Google Scholar 

  • Helgeson, H. C and Aagaard, P. (1984) Activity/composition relations among silicates: I. Thermodynamics of in-trasite mixing and substitutional order/disorder in minerals: Amer. J. Sci. 283 (in press).

    Google Scholar 

  • Helgeson, H. C, Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Amer. J. Sci. 278-A, 1–213.

    Google Scholar 

  • Helgeson, H. C and Kirkham D. H. (1974a) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent: Amer. J. Sci. 274, 1089–1198.

    Article  Google Scholar 

  • Helgeson, H. C and Kirkham D. H. (1974b) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye-Huckel parameters for activity coefficients and relative partial mo-lal properties: Amer. J. Sci. 274, 1199–1261.

    Article  Google Scholar 

  • Helgeson, H. C and Kirkham D. H. (1976) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution: Amer. J. Sci. 276, 97–240.

    Article  Google Scholar 

  • Helgeson, H. C, Kirkham D. H., and Flowers, G. C (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C: Amer. J. Sci. 281, 1249–1516.

    Article  Google Scholar 

  • Hey, M. H. (1954) A new review of the chlorites. Mineral Mag. 30, 277–292.

    Google Scholar 

  • Kelley, K. K. (1960) Contributions to the data on theoretical metallurgy. XIII. High-temperature heat content, heat capacity, and entropy data for the elements and inorganic compounds: U.S. Bur. Mines Bull. 584, 232 pp.

  • Kittrick, J. A. (1982) Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria: Clays & Clay Minerals 30, 167–179.

    Article  Google Scholar 

  • Nriagu, J. O. (1975) Thermochemical approximations for clay minerals: Amer. Mineral. 60, 834–839.

    Google Scholar 

  • Stoessell, R. K. (1977) Geochemical studies of two magnesium silicates, sepiolite and kerolite: Ph.D. thesis, Univ. California at Berkeley, 135 pp.

    Google Scholar 

  • Stoessell, R. K. (1979) A regular solution site-mixing model for illites: Geochim. Cosmochim. Acta 43, 1151–1159.

    Article  Google Scholar 

  • Stoessell, R. K. (1981) Refinements in a site-mixing model for illites: local electrostatic balance and the quasi-chemical approximation: Geochim. Cosmochim. Acta 45, 1733–1741.

    Article  Google Scholar 

  • Stoessell, R. K. and Hay, R. (1978) The geochemical origin of sepiolite and kerolite at Amboseli, Kenya: Contrib. Mineral. Petrol. 68, 255–267.

    Article  Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 1101–1116.

    Article  Google Scholar 

  • Tardy, Y. and Fritz, B. (1981) An ideal solid solution model for calculating solubility of clay minerals: Clay Miner. 16, 361–373.

    Article  Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. V., Halow, I., Bailey, S. S. M., and Schumm, R. H. (1969) Selected values of chemical thermodynamic properties. Tables for elements 35 through 53 in the standard order of arrangement: Nat. Bur. Stand. Tech. Note 270-4, 141 pp.

  • Walther, J. V. and Helgeson, H. C (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures: Amer. J. Sci. 277, 1315–1351.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1975) The Chemistry of Clay Minerals: Elsevier, New York, 213 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoessell, R.K. Regular Solution Site-Mixing Model for Chlorites. Clays Clay Miner. 32, 205–212 (1984). https://doi.org/10.1346/CCMN.1984.0320308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1984.0320308

Key Words

Navigation