Skip to main content
Log in

Clay Minerals of Lake Abert, an Alkaline, Saline Lake

  • Published:
Clays and Clay Minerals

Abstract

Mineralogical and chemical analyses of fine clay fractions from in and around Lake Abert, Lake County, Oregon, show that the pyroclastic rocks supplying detritus to the lake weather to a suite of layer silicate clay minerals varying from high-charge dioctahedral montmorillonite to montmorillonite/intergrade smectite-chlorite interstratifications. In the lake these clays extract K, Mg, and Si to form authigenic interstratified illite and a trioctahedral, Mg-rich mineral resembling stevensite in composition. Both the neoformed interstratifications contribute little unambiguously to X-ray powder diffraction patterns, which are dominated by the reflections of detrital clays. From limited data it appears that the illite occurs below 0.8 m depth in sediments of a possibly somewhat fresher (brackish) lake and the trioctahedral interstratification between 0.4 and 0.2 m depth in sediments of a lake of about the same size and salinity (about 30–90 g/kg) as that of the present lake.

Резюме

Минералогические и химические анализы мелких фракций глин, взятых изнутри и из окрестности озера Аберт в дистрикте Озеро в Орегоне, указывают, что пирокластические породы (которые доставляют детритус в озеро) выветриваются и образуют слоистые силикатовые глинистые минералы, отличающиеся по составу от заряженных двухоктаэдрических монтмориллонитов до переслаиваний монтмориллонит-смектит-хлорит. В озере эти глины извлекают из воды К, Mg, и Si для образования аутигенных переслаивающихся иллитов и триоктаэдрического, Mg-обогащенного минерала, напоминающего по составу стевенсит. Оба свежеобразованные переслаивания способствуют частично недвусмысленно рентгеновским порошковым диффрактограммам, в которых доминируют отражения детритовых глин. На основании ограниченных данных кажется, что иллит находится ниже глубины 0,8 м в осадках немного пресного озера (солоноватого), а триоктаэдрические переслаивания проявляются на глубине между 0,4 и 0,2 м в осадках озера примерно такого же самого размера и солености (около 30–90 г/кг), как существующего в настоящее время озера. [E.G.]

Resümee

Mineralogische und chemische Analysen von feinen Tonfraktionen aus dem Innern und vom Rand des Lake Abert, Lake County, Oregon, zeigen, daß pyroklastische Gesteine Gesteinsschutt in den See liefern, der zu einer Abfolge von Tonmineralen verwittert, die von stark beladenem dioktaedrischem Montmorillonit bis Montmorillonit/Smektit-bzw. Montmorillonit/Chlorit-Wechsellagerungen variieren. Im See extrahieren diese Tone K, Mg, und Si, um autigene Illit-Wechsellagerungen und ein trioktaedrisches Mg-reiches Mineral, das in der Zusammensetzung mit Stevensit vergleichbar ist, zu bilden. Beide neugebildeten Wechsellagerungen tragen wenig eindeutige Reflexe zur Röntgenpulveraufnahme bei, die vor allem die Reflexe der detritischen Tone zeigt. Aus den begrenzten Daten geht hervor, daß der Illit unter 0,8 m Tiefe in den Sedimenten eines möglicherweise etwas frischeren (brackischen) Sees auftreten und die triok-taedrischen Wechsellagerungen zwischen 0,4 und 0,2 m Tiefe in Sedimenten eines Sees, der etwa die gleiche Größe und die gleiche Salinität aufweist (etwa 30–90 g/kg) wie der gegenwärtige See. [U.W.]

Résumé

Des analyses minéralogiques et chimiques de fractions d’argile fines provenant de l’intérieur et d’autour du Lac Abert, Lake County, Oregon, montrent que les roches pyroclastiques fournissant du détritus au lac s’altèrent en une suite de minéraux argileux silicates variant de montmorillonite dioctaèdrale à haute charge à des interstratifications montmorillonite/smectite-chlorite intergrade. Dans le lac, ces argiles extraient K, Mg, et Si pour former de l’illite authigénique interstratifiée et un minéral riche en Mg ressemblant à la stevensite. Ces deux interstratifications nouvellement formées contribuent peu sans ambiguité aux clichés de diffraction poudrée des rayons-X, qui sont dominés par les réflections des argiles détritiques. A partir de données limitées il semble que l’illite se trouve sous une profondeur de 0,8 m dans les sédiments d’un lac possiblement à eau plus fraîche (saumure), et que l’interstratification trioctaèdrale se trouve entre 0,4 et 0,2 m de profondeur dans les sédiments d’un lac d’à peu près la même taille et de même salinité (~30–90 g/kg) que celles du lac présent. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brindley, G. W. (1955) Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics: Amer. Mineral. 40, 239–247.

    Google Scholar 

  • Brindley, G.W. (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 495 pp.

    Google Scholar 

  • Brindley, G. W., Bish, D. L., and Wan, H-M. (1977) The nature of kerolite, its relation to talc and stevensite: Mineral. Mag. 41, 443–452.

    Google Scholar 

  • Brown, G., Newman, A. C. D., Rayner, J. H., and Weir, A. H. (1978) The structure and chemistry of soil clay minerals: in The Chemistry of Soil Constituents, D. J. Greenland and M. H. B. Hayes, eds., Wiley, New York, 29–178.

    Google Scholar 

  • Brown, G., Edwards, B., Ormerod, E. C., and Weir, A. H. (1972) A simple diffractometer heating stage: Clay Miner. 9, 407–413.

    Google Scholar 

  • Carmouze, J. P. (1976) La regulation hydrogéochimique du lac Tchad: Thesis, Univ. of Paris VI, Paris, 418 pp.

    Google Scholar 

  • Deike, R. G. and Jones, B. F. (1980) Provenance, distribution, and alteration of volcanic sediments in a saline alkaline lake: in Hypersaline Brines and Evaporite Environments, A. Nissenbaum, ed., Elsevier, Amsterdam, 167–193.

    Google Scholar 

  • Drever, J. I. (1971) Magnesium-iron replacement in clay minerals in anoxic marine sediments: Science 172, 1334–1336.

    Google Scholar 

  • Drever, J. I. (1974) The magnesium problem: in The Sea, vol. 5, E. D. Goldberg, ed Wiley, New York, 337–357.

    Google Scholar 

  • Dyni, J. R. (1976) Trioctahedral smectite in the Green River Formation, Duchesne County, Utah: U.S. Geol. Surv. Prof. Pap. 967, 14 pp.

    Google Scholar 

  • Eberl, D.D., Jones, B. F., and Khoury, H. N. (1982) Mixed layer kerolite/stevensite from the Amargosa Desert, Nevada: Clays & Clay Minerals 30, 321–326.

    Google Scholar 

  • Eugster, H. P. and Jones, B. F. (1968) Gels composed of sodium aluminum silicate, Lake Magadi, Kenya: Science 171, 160–164.

    Google Scholar 

  • Eugster, H. P. and Jones, B. F. (1979) Behavior of major solutes during closed-basin brine evolution: Amer. J. Sci. 279, 609–631.

    Google Scholar 

  • Eugster, H. P. and Maglione, G. (1979) Brines and evaporites of the Lake Chad basin, Africa: Geochim. Cosmochim. Acta 43, 973–981.

    Google Scholar 

  • Farmer, V. C. (1974) The layer silicates: in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineral. Soc., London.

    Google Scholar 

  • Gac, J.Y., Droubi, A., Fritz, B., and Tardy, Y. (1977) Geochemical behavior of silica and magnesium during the evaporation of waters in Chad: Chem. Geol. 19, 215–228.

    Google Scholar 

  • Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites: Amer. Mineral. 51, 825–854.

    Google Scholar 

  • Jones, B. F., Eugster, H. P., and Rettig, S. L. (1977) Hydrochemistry of the Lake Magadi Basin, Kenya: Geochim. Cosmochim. Acta 41, 53–72.

    Google Scholar 

  • Jones, B. F. and Van Denburgh, A. S. (1966) Geochemical influences on the chemical character of closed lakes: in Symposium of Garda, Hydrology of Lakes and Reservoirs, Int. Assoc. Sci. Hydrol. Pub. 70, 435–446.

    Google Scholar 

  • Jones, B. F., Van Denburgh, A. S., Truesdell, A. H., and Rettig, S. L. (1969) Interstitial brines in playa sediments: Chem. Geol. 4, 253–262.

    Google Scholar 

  • Millot, G. (1949) Relations entre la constitution et la genèse des roches sédimentaires argileuses: Thèse Sci. Nancy et Geol. Appl. Prospec. Min. 2, 352 pp.

    Google Scholar 

  • Millot, G. (1964) Géologie des Argiles: Masson et Cie., Paris, 425 pp.

    Google Scholar 

  • Pedro, G., Carmouze, J. P., and Velde, B. (1978) Peloidal nontronite formation in recent sediments of Lake Chad: Chem. Geol. 23, 139–149.

    Google Scholar 

  • Phillips, K. N. and Van Denburgh, A. S. (1971) Hydrology and geochemistry of Abert, Summer, and Goose Lakes, and other closed-basin lakes in south-central Oregon: U.S. Geol. Surv. Prof. Pap. 502-B, 86 pp.

    Google Scholar 

  • Reynolds, R. C., Jr. (1980) Interstratifled clay minerals: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, ed., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Reynolds, R. C., Jr. and Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites: Clays & Clay Minerals 18, 25–36.

    Google Scholar 

  • Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Losung: Z. Pflanzenernahr. Dung. Bodenkunde 105, 194–202.

    Google Scholar 

  • Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks—revised edition: U.S. Geol. Surv. Bull. 1401, 76 pp.

  • Singer, A. and Stoffers, P. (1980) Clay mineral diagenesis in two East African lake sediments: Clay Mineral. 15, 291–307.

    Google Scholar 

  • Tettenhorst, R. and Moore, G. E., Jr. (1978) Stevensite oolites from the Green River Formation of central Utah: J. Sed. Pet. 48, 587–594.

    Google Scholar 

  • Van Denburgh, A. S. (1975) Solute balance at Abert and Summer Lakes, south-central Oregon: U.S. Geol. Surv. Prof. Pap. 502-C, 29 pp.

    Google Scholar 

  • Walker, G. W. (1963) Reconnaissance geologic map of the eastern half of the Klamath Falls (AMS) Quadrangle, Lake and Klamath Counties, Oregon: U.S. Geol. Surv. Mineral Inv. Field Studies Map MF-260.

    Google Scholar 

  • Velde, B. and Weir, A.H. (1979) Synthetic illite in the chemical system K2O-Al2O3-SiO2-nH2O at 300°C and 2 kb: in Proc. 6th Internat. Clay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, New York, 395–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, B.F., Weir, A.H. Clay Minerals of Lake Abert, an Alkaline, Saline Lake. Clays Clay Miner. 31, 161–172 (1983). https://doi.org/10.1346/CCMN.1983.0310301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1983.0310301

Key Words

Navigation