Skip to main content
Log in

Physicochemical Properties of Montmorillonite Interlayered with Cationic Oxyaluminum Pillars

  • Published:
Clays and Clay Minerals

Abstract

By ion exchanging expandable clay minerals with large, cationic oxyaluminum polymers, “pillars” were introduced that permanently prop open the clay layers. On the basis of thermal, infrared spectroscopic, adsorption, and X-ray powder diffraction (XRD) analysis, the interlayering of commercial sodium bentonite with aluminum chlorohydroxide, [Al13O4(OH)24(H2O)12]+7, polymers appears to have produced an expanded clay with a surface area of 200–300 m2/g. The pillared product contained both Brönsted and Lewis acid sites. XRD and differential scanning calorimetry measurements indicated that the micropore structure of this interlayered clay is stable to 540°C. Between 540° and 760°C, the pillared clay collapsed with a corresponding decrease in surface area (to 55 m2/g) and catalytic cracking activity for a Kuwait gas oil having a 260°-426°C boiling range.

Zusammenfassung

Wenn expandierbare Tonminerale mit großen, kationischen Oxyaluminium-Polymeren ausgetauscht werden, werden “Pillars” eingebaut, die die Tonlagen permanent aufspreizen. Aufgrund thermischer und infrarotspektroskopischer, Adsorptions- und Röntgenpulverdiffraktions (XRD)-Analysen scheint die Wechsellagerung von käuflichem Na-Bentonit mit Aluminiumchlorohydroxid, [Al13O4(OH)24(H2O)12]+7, -Polymeren zur Bildung eines expandierbaren Tons zu führen, der eine Oberfläche von 200 - 300 m2/g hat. Das “Pillar”-Produkt enthielt sowohl Brönsted- als auch Lewis-Säureplätze. XRD- und differentialkalorimetrische Messungen deuteten darauf hin, daß die Struktur der Mikroporen dieser Wechsellagerungstone bis 540°C stabil ist. Zwischen 540° und 760°C brach der “Pillar”-Ton zusammen, was zu einer entsprechenden Abnahme der Oberfläche (auf 55 m2/g) führt und zu einer Abnahme der Fähigkeit zum katalytisch-en Cracken von Gasöl aus Kuwait, das einen Siedebereich zwischen 260° und 420°C hat. [U.W.]

Résumé

Par l’échange d’ions entre des minéraux argileux expansibles et de larges polymères cationiques oxyaluminium, des “pilliers” ont été introduits qui maintiennent ouverts de manière permanente les couches argileuses. Basé sur des analyses thermiques, de spectroscopie infrarouge, d’adsorption, et de diffraction de rayons-X (XRD), le placement en couches alternatives de bentonite de sodium commerciale et de polymères chlorohydroxide d’aluminium, [Al13O4(OH)24(H2O)12]+7, semble avoir produit une argile dilatée ayant une aire de surface égale à 200–300 m2/g. Le produit à pilliers contenait à la fois des sites acides Brönsted et Lewis. Des mesures XRD et de calorimétrie differentielle ont indiqué que la structure micropore de cette argile à couches alternatives est stable jusqu’a 540°C. Entre 540° et 760°C, l’argile à pilliers s’est effondrée entraînant une diminution correspondante de l’aire de surface (à 55 m2/g) et une activité catalytique/cra-quante pour un petrole à essence du Kuwait ayant une étendue de températures d’ ébullition de 260°-426°C. [D.J.]

Абстракция

При помощи ионообменных расширяющихся глинистых минералов с большими катион-ными оксиалюминовыми полимерами были введены “столбы,” которые постоянно поддерживают открытыми глинистые слои. На основе данных по термическому и адсорбционному анализах, инфракрасной спектроскопии и порошковой рентгеновской диффракции (XRD), прослойка промышленного бентонита с хлоргидроокисей алюминия, [Аl13O4(OH)24(Н2O)12]+7, кажется, что полимеры образовали расширенную глину с площад поверхности 200–300 м2/г. “Столбовый” продукт содержал кислотные места Бренстеда и Льюиса. Измерения по ХRD и дифференциальной сканирующей калориметрии указывают, что микропористая структура прослойковой глины является стабильной до 540°С. [Е.С.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailar, J. C. (1956) The Chemistry of the Coordination Compounds: Reinhold, New York, 453 pp.

    Google Scholar 

  • Barrer, R. M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves: Academic Press, London, 497 pp.

    Google Scholar 

  • Barrett, G. P., Joyner, L. G., and Halenda, P. H. (1950) The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms: J. Amer. Chem. Soc. 73, 373–380.

    Article  Google Scholar 

  • Breck, D. W. (1980) Potential uses of natural and synthetic zeolites in industry: in The Properties and Applications of Zeolites, R. P. Townsend, ed., The Chemical Society, London, 391–422.

    Google Scholar 

  • Brindley, G. W. and Sempels, R. E. (1977) Preparation and properties of some hydroxy-aluminum beidellites: Clay Miner, 12, 229–237.

    Article  Google Scholar 

  • Ciapetta, F. G. and Anderson, D. (1969) Microactivity test for cracking: Oil Gas J. 65, 88–93.

    Google Scholar 

  • Denk, V. G. and Alt, J. (1952) 5/6 Basic aluminum chloride and sulfate: Z. Anorgan. Allg. Chemie, 244–269.

    Google Scholar 

  • Flanigen, E. M. (1980) Molecular sieve zeolite technology— the first twenty-five years: in Proc. 5th Inter. Conf. Zeolites, L. V. Rees, ed., Heyden, London, 760–780.

    Google Scholar 

  • Hem, J. D. and Roberson, C. E. (1967) Basic aluminum compounds: U.S. Geol. Surv. Water-Supply Pap. 1827-A, Al–A55.

    Google Scholar 

  • Hsu, P. H. and Bates, T. F. (1964) Fixation of hydroxy-aluminum polymers by vermiculite: Soil Science 28, 763–769.

    Article  Google Scholar 

  • Johansson, G. (1960) On the crystal structure of some basic aluminum salts: Acta Chem. Scand. 14, 769–773.

    Article  Google Scholar 

  • Kiviat, F. E. and Petrakis, L. (1973) Surface acidity of transition metal modified aluminas. Infrared and NMR investigation of adsorbed pyridine: J. Phys. Chem. 77, 1232–1239.

    Article  Google Scholar 

  • Lahav, N., Shani, U., and Shabtai, J. (1978) Crosslinked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite: Clays & Clay Minerals 26, 107–114

    Article  Google Scholar 

  • Loeppert, R. H., Mortland, M. M., and Pinnavaia, T. J. (1979) Synthesis and properties of heat-stable expanded smectite and vermiculite: Clays & Clay Minerals 27, 201–208.

    Article  Google Scholar 

  • Parry, E. P. (1963) An infrared study of pyridine adsorbed on acid sites. Characterization of surface acidity: J. Catal. 2, 371–379.

    Article  Google Scholar 

  • Shabtai, J., Lazar, R., and Oblad, A. G. (1980) Acidic forms of cross-linked smectites. A novel type of cracking catalysts: in Proc. 7th Inter. Congress Catalysis, T. Seiyama and K. Tanabe, eds., Kodansha-Elsevier, Tokyo, 828–837.

    Google Scholar 

  • Svoboda, A. R. and Kunze, G. W. (1966) Infrared study of pyridine adsorbed on montmorillonite surfaces: in Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966, S. W. Bailey, ed., Pergamon Press, New York, 277–288.

    Google Scholar 

  • Treadwell, W. D. and Lien, O. T. (1931) A basic aluminum chloride: Helv. Chim. Acta 14, 473–481.

    Article  Google Scholar 

  • Vaughan, D. E. W. and Lussier, R. (1980) Preparation of molecular sieves based on pillared interlayered clays (PILC): in Proc. 5th Inter. Conf. Zeolites, L. V. Rees, ed., Heyden, London, 94–101.

    Google Scholar 

  • Vaughan, D. E. W., Lussier, R., and Magee, J. (1979) Pillared interlayered clay materials useful as catalysts and sorbents: U.S. Patent 4,176,090, 7 pp.

    Google Scholar 

  • Ward, J. W. (1968) The ratio of absorption coefficients of pyridine adsorbed on Lewis and Brönsted acid sites: J. Catal. 11, 271–273.

    Article  Google Scholar 

  • Wright, A. C., Granquist, W. T., and Kennedy, J. V. (1972) Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay: J. Catal. 25, 65–80.

    Article  Google Scholar 

  • Yamanaka, S. and Brindley, G. W. (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride: Clays & Clay Minerals 27, 119–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Occelli, M.L., Tindwa, R.M. Physicochemical Properties of Montmorillonite Interlayered with Cationic Oxyaluminum Pillars. Clays Clay Miner. 31, 22–28 (1983). https://doi.org/10.1346/CCMN.1983.0310104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1983.0310104

Key Words

Navigation