Skip to main content
Log in

Oxidation and Reduction of Structural Iron in Chlorite at 480°C

  • Published:
Clays and Clay Minerals

Abstract

An iron-rich chlorite, ripidolite, was oxidized by air-heating at 480°C, i.e., below the dehydroxylation temperature and subsequently reduced in hydrogen at the same temperature. On the basis of chemical, differential thermal, infrared, Mössbauer, and X-ray powder diffraction analyses, Fe(II) seems to be present only in the 2:1 layer of the original chlorite in a type of site similar to that of Fe(II) in biotite, with OH in cis-positions. These data also suggest that octahedral Al and Fe(III) are located in the hydroxide sheet of the original chlorite. The structural changes of the mineral due to the oxidation and the subsequent reduction appear limited to minor structural rearrangements and, perhaps, to the introduction of OH in both cis- and trans-positions. The results of the investigation are in agreement with a reaction of the form: [Fe(II)OH]+ ⇋ [Fe(III)O]+ + H(H+ + e).

Резюме

Резюме—Хлорит богатый в железо, рипидолит, был окислен путем нагрева в воздухе при 480°С, то есть ниже температуры дегидроксиляции. Окисленный хлорит был последовательно восстанов-лен в водороде при такой же температуре. По данным химического, термодифференциального, инфракрасного, Мессбауеровского, и рентгеновского анализов кажется, что Fe(II) существует только в 2:1 слоях исходного хлорита в местах, похожих на те, которые Fe(II) занимает в биотите, с группами OH в положениях cis. Эти данные указывают также на то, что октаэдрические А1 и Fe(III) расположены в гидроокисных пластах исходного хлорита. Структурные изменения минерала, возникающие в результате окисления и последовательного восстановления кажутся быть ограниченными до небольших структурных перестроек, и, возможно до введения групп OH в обоих cis и trans положениях. Результаты исследований согласны со следующей формой реак-ции: [Fe(II)OH]+ ⇌ [Fe(III)O]+ + H(H+ + e). [E.C.]

Resümee

Ein eisenreicher Chlorit, Ripidolith, wurde durch Erhitzen auf 480°C an der Luft, (d.h. unter die Dehydratationstemperatur) oxidiert und anschließend im Wasserstoff bei der gleichen Temperatur reduziert. Aufgrund chemischer Analysen, Differentialthermo-, Infrarot-, Mössbauer- und Röntgendiffraktometer-Untersuchungen scheint das Fe2+ nur in der 2:1 Schicht des ursprünglichen Chlorites vorhanden zu sein, wobei die Art des Platzes, den das Fe2+ besetzt, dem des Fe2+ in Biotit ähnelt und das (OH) in cis-Stellung ist. Diese Ergebnisse deuten weiters darauf hin, daß oktaedrisches AI und Fe3+ in den Hydroxidschichten des ursprünglichen Chlorits sind. Die strukturellen Veränderungen des Minerals aufgrund der Oxidation und der darauffolgenden Reduktion scheinen auf geringe strukturelle Neuordnungen und, vielleicht, auf die Einführung von (OH) sowohl in eis- als auch in /rans-Stellung beschränkt zu sein. Die Ergebnisse dieser Untersuchung stimmen mit folgender Reaktion überein: [Fe2+OH]+ “ [Fe3+O]+ + H(H+ + e). [U.W.]

Résumé

Une chlorite riche en fer, la ripidolite, a été oxidée par échauffement à l’air à 480°C, c’est à dire sous la température de déshydroxylation, et la chlorite oxidée a subséquemment été réduite dans l’hydrogène à la même température. Basé sur des analyses chimiques, thermales différentielles, infrarouges, de Mössbauer, et de diffraction poudrée aux rayons-X, Fe(II) ne semble être présent que dans la couche 2:1 de la chlorite originale, dans un genre de site semblable à celui de Fe(II) dans la biotite, avec OH dans les positions-cis. Ces données suggèrent aussi qu’Ai octaèdral et Fe(III) sont situés dans la feuille hydroxide de la chlorite originale. Les changements structuraux du minéral causés par T oxidation et la réduction subséquente semblent limités à des réarrangements mineurs, et peut-être à l’introduction d’OH dans les positions -cis et -trans. Les résultats de l’investigation s’accordent avec une réaction de la forme: [Fe(II)OH]+ ⇌ [Fe(III)O]++H(H+ + e]. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison, C. C., Addison, W. E., Neal, G. H., and Sharp, J. H. (1962) Amphiboles. Parti. The oxidation of crocidolite: J. Chem. Soc, 1468–1471.

    Google Scholar 

  • Bagin, V. I., Gengler, T. S., Dainyak, L. G., and Kuz’min, R. N. (1980) Mössbauer, thermomagnetic, and X-ray study of cation ordering and high-temperature decomposition in biotite: Clays & Clay Mineral. 28, 188–196.

    Article  Google Scholar 

  • Bailey, S. W. (1975) Chlorites: in Soil Components, Vol. 2, Inorganic Components, J. E. Gieseking, ed., Springer-Verlag, New York, 191–263.

    Chapter  Google Scholar 

  • Bailey, S. W. (1980) Structure of layer silicates: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 86–98.

    Google Scholar 

  • Bernas, B. (1968) A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry: Anal. Chem. 40, 1682–1686.

    Article  Google Scholar 

  • Blaauw, C., Stroink, G., and Leiper, W. (1980) Mössbauer analysis of talc and chlorite: J. Phys. 41, C1-411-412.

  • Borggaard, O. K. (1976) Selective extraction of amorphous iron oxide by EDTA from a mixture of amorphous iron oxide, goethite, hematite: J. Soil Sci. 27, 478–486.

    Article  Google Scholar 

  • Borggaard, O. K. (1979) Selective extraction of amorphous iron oxides by EDTA from a Danish sandy loam: J. Soil Sci. 30, 727–734.

    Article  Google Scholar 

  • Caillère, S. and Hénin, S. (1957) The chlorite and serpentine minerals: in The Differential Thermal Investigation of Clays, R. C. Mackenzie, ed., Mineralogical Society, London, 207–230.

    Google Scholar 

  • Ericsson, T. and Wäppling, R. (1976) On texture effects in M1 3/2-1/2 Mössbauer spectra: J. Phys. 37, C6-719-723.

  • Ericsson, T., Wäppling, R., and Punakivi, K. (1977) Mössbauer spectroscopy applied to clay and related minerals: Geol. Foren. Stockholm Förh. 99, 229–244.

    Article  Google Scholar 

  • Farmer, V. C. (1974) The layer silicates: in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 331–363.

    Chapter  Google Scholar 

  • Farmer, V. C., Russell, J. D., McHardy, W. J., Newman, A. C. D., Ahlrichs, J. L., and Rimsaite, J. Y. H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites: Mineral. Mag. 38, 121–137.

    Article  Google Scholar 

  • Gilkes, R. J., Young, R. C., and Quirk, J. P. (1972) The oxidation of octahedral iron in biotite: Clays & Clay Mineral. 20, 303–315.

    Article  Google Scholar 

  • Goodman, B. A. and Bain, D. C. (1979) Mössbauer spectra of chlorites and their decomposition products: in Proc. Int. Clay Conference, Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 65–74.

    Google Scholar 

  • Hayashi, H. and Oinuma, K. (1965) Relationship between infrared absorption spectra in the region of 450–900 cm−1 and chemical composition of chlorite: Amer. Mineral. 50, 476–483.

    Google Scholar 

  • Hayashi, H. and Oinuma, K. (1967) Si-O absorption band near 1000 cm−1 and OH absorption bands of chlorite: Amer. Mineral. 52, 1206–1210.

    Google Scholar 

  • Hayashi, H., Sano, H., and Shirozu, H. (1972) Mössbauer spectra of chlorites in natural and heated state: Kobutsugaku Zassh. 10, 507–516.

    Google Scholar 

  • Hogg, C. S. and Meads, R. E. (1975) A Mössbauer study of the thermal decomposition of biotites: Mineral. Mag. 40, 79–88.

    Article  Google Scholar 

  • Ingalls, R. (1964) Electric-field gradient tensor in ferrous compounds: Phys. Rev. 133, A787–795.

    Article  Google Scholar 

  • Klug, H. P. and Alexander, L. E. (1974) X-ray Identification Procedures for Polycrystalline and Amorphous Materials. Wiley, New York, p. 356.

    Google Scholar 

  • Makumbi, L. and Herbillon, A. J. (1972) Vermiculitisation expérimentale d’une chlorite: Bull. Groupe Fr. Argile. 24, 153–164.

    Article  Google Scholar 

  • Post, J. L. and Plummer, C. C. (1972) The chlorite series of Flagstaff Hill Area, California: A preliminary investigation: Clays & Clay Mineral. 20, 271–283.

    Article  Google Scholar 

  • Ross, G. J. (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation: Natur. 255, 133–134.

    Article  Google Scholar 

  • Ross, G. J. and Kodama, H. (1974) Experimental transformation of a chlorite into a vermiculite: Clays & Clay Mineral. 22, 205–211.

    Article  Google Scholar 

  • Ross, G. J. and Kodama, H. (1976) Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation: Clays & Clay Mineral. 24, 183–190.

    Article  Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1976a) Reduction and oxidation of Fe3+ in dioctahedral smectites—1: Reduction with hydrazine and dithionite: Clays & Clay Mineral. 24, 271–282.

    Article  Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1976b) Reduction and oxidation of Fe3+ in dioctahedral smectites—2: Reduction with sodium sulfide solutions: Clays & Clay Mineral. 24, 283–288.

    Article  Google Scholar 

  • Russell, J. D., Goodman, B. A., and Fraser, A. R. (1979) Infrared and Mössbauer studies of reduced nontronites: Clays & Clay Mineral. 27, 63–71.

    Article  Google Scholar 

  • Shirozu, H. (1958) X-ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colors: Mineral. J. 2, 209–223.

    Article  Google Scholar 

  • Steinfink, H. (1958) The crystal structure of chlorite. I. A monoclinic polymorph: Acta Crystallogr. 11, 191–195.

    Article  Google Scholar 

  • Taylor, G. L., Routsala, A. P., and Keeling, R. O. (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy: Clays & Clay Mineral. 16, 381–391.

    Article  Google Scholar 

  • Tripathi, R. P., Chandra, U., Chandra, R., and Lokanathan, S. (1978) A Mössbauer study of the effects of heating biotite, phlogopite and vermiculite: J. Inorg. Nucl. Chem. 40, 1293–1298.

    Article  Google Scholar 

  • Vedder, W. and Wilkins, R. W. T. (1969) Dehydroxylation and rehydroxylation, oxidation, and reduction of micas: Amer. Mineral. 54, 482–509.

    Google Scholar 

  • Veith, J. A. and Jackson, M. L. (1974) Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites: Clays & Clay Mineral. 22, 345–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borggaard, O.K., Lindgreen, H.B. & Mørup, S. Oxidation and Reduction of Structural Iron in Chlorite at 480°C. Clays Clay Miner. 30, 353–363 (1982). https://doi.org/10.1346/CCMN.1982.0300506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1982.0300506

Key Words

Navigation