Skip to main content
Log in

Equilibration of Clays in Natural and Simulated Bottom-Sediment Environments

  • Published:
Clays and Clay Minerals

Abstract

To identify mineral alterations which might occur in stream environments, predominantly illitic soil clays were equilibrated in bottom sediment environments under natural and laboratory conditions for 217 and 98 days, respectively. Changes occurring after 217 days on the bottom of the Auglaize River, Ohio, consisted of a reduction in carbonate content, a decrease in particle size, and a slight loss of Al and Si; however, no significant changes in basal spacings were observed.

Clays equilibrated in river water under laboratory conditions at 4° and 25°C in CO2, N2, or air atmospheres showed only an increase in oxalate-extractable iron. The concentrations of Al, Si, Fe, Mn, K, and Ca in solution above the clays varied with the atmosphere and temperature. The concentrations of Fe, Al, and Si in solution may have been influenced by the dissolution of amorphous Al-Fe-Si compounds. Therefore, the mineralogical differences between soils in the watershed and sediments in the drainage system can not be attributed to mineralogical transformations during residence in the drainage system.

Резюме

Чтобы распознать минеральные преобразования, которые могут произойти в среде потока, преимущественно иллитовые почвенные глины были уравновешены в среде донных отложений в естественных и лабораторных условиях на протяжении 217 и 98 дней соответственно. Изменения, происшедшие после 217 дней на дне реки Оглаз включали уменьшение содержания карбоната, уменьшение размеров зерен и небольшие потери А1 и Si; однако не было обнаружено существенных изменений в базальных промежутках.

Глины, уравновешенные в речной воде в лабораторных условиях при 4° и 25°С в С02, N2, или воздушной атмосфере, показали только увеличение содержания железа, извлекаемого оксалатом. Концентрации Al, Si, Fe, Мn, K, и Ca в растворе над глинами изменялись в зависимости от атмосферы и температуры. Растворение аморфных соединений Al-Fe-Si возможно повлияло на концентрацию Fe, Al, и Si в растворе. Следовательно, минералогические различия между почвами в бассейне реки и осадками в дренажной системе не могут быть обусловлены минералогическим преобразованием во время пребывания в дренажных системах. [N.R.]

Resümee

Um Mineralumwandlungen zu bestimmen, die in Flußmilieus auftreten können, wurden überwiegend illitische Bodentone in Bodensedimenten unter natürlichen und Labor-Bedingungen für 217 bzw. 98 Tage ins Gleichgewicht gebracht. Die Veränderungen, die nach 217 Tagen auf dem Grund des Auglaize-Flusses auftraten, bestanden in einer Abnahme des Karbonatgehaltes, einer Verkleinerung der Teilchengröße und einem geringen Verlust von Al und Si. Es wurden jedoch keine bemerkenswerten Veränderungen bei den Basisabständen beobachtet.

Tone, die unter Laborbedingungen bei 4° und 25°C in Flußwasser bei CO2-, N2-, und Luft-Atmosphäre ins Gleichgewicht gebracht wurden, zeigen nur eine zunahme des durch Oxalat extrahierbaren Eisens. Die Konzentrationen von Al, Si, Fe, Mn, K, und Ca in der Lösung über den Tonen variiert mit der Art der Atmosphäre und mit der Temperatur. Die Konzentrationen an Fe, Al, und Si in der Lösung könnten durch die Auflösung amorpher Al-Fe-Si-Komponenten beeinflußt werden. Deshalb können die mineralogischen Unterschiede zwischen den Böden im Einzugsgebiet und den Sedimenten im Entwässerungssystem nicht auf mineralogische Veränderungen während des Aufenthalts im Entwässerungssystem zurückgeführt werden. [U.W.]

Résumé

Pour identifier les altérations minérales qui se produire dans des environements fluviaux, des argiles de sol predominément illitiques ont été équilibrées dans des environements de sédiments de lit sous des conditions naturelles et de laboratoire pendant respectivement 217 et 98 jours. Les changements qui se sont produits après 217 jours dans le lit de la rivière Auglaize consistaient en une réduction en contenu en carbonate, en une diminution de la taille de particule, et en une légère perte d’Al et Si; aucun changement significatif n’a cependant été observé dans les espacements de base.

Les argiles équilibrées dans l’eau de rivière sous des conditions de laboratoire à 4° et 25°C dans des atmosphères CO2, N2, ou l’air n’ont montré qu’un accroissement en fer à oxalate qui peut être extrait. Les concentrations en Al, Si, Fe, Mn, K, et Ca en solution au dessus des argiles variaient selon l’atmosphère et la température. Les concentrations en Fe, Al, et Si en solution peuvent avoir été influencées par la dissolution de composés Al-Fe-Si amorphes. Les différences minéralogiques entre les argiles dans la ligne de partage des eaux et dans les sédiments du système de drainage ne peuvent donc pas être attribuées à des transformations minéralogiques se produisant pendant la résidence dans le système de drainage. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernas, B. (1968) A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry: Anal. Chem. 40, 1682–1686.

    Article  Google Scholar 

  • Chapman, H. D. (1965) Cation exchange capacity: in Methods of Soil Analysis, C. A. Black, ed., American Society of Agronomy, Madison, Wisconsin, 891–901.

    Google Scholar 

  • Connell, W. E. and Patrick, W. H. (1968) Sulfate reduction in soil. Effects of redox potential and pH: Science 159, 86–87.

    Article  Google Scholar 

  • Doner, H. E. and Lynn, W. C. (1977) Carbonate, halide, sulfate, and sulfide minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 75–98.

    Google Scholar 

  • Dreimanis, A. (1962) Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus: J. Sediment. Petrology 32, 520–529.

    Google Scholar 

  • Frink, C. R. (1969) Chemical and mineralogical characteristics of eutrophic lake sediments: Soil Sci. Soc. Amer. Proc. 33, 369–372.

    Article  Google Scholar 

  • Gotoh, S. and Patrick, W. H. (1972) Transformation of manganese in a waterlogged soil as affected by redox potential and pH: Soil Sci. Soc. Amer. Proc. 36, 738–742.

    Article  Google Scholar 

  • Green, D. B. and Smeck, N. E. (1979) Occurrence and stability of calcite in the Maumee River: J. Environ. Qual. 8, 182–188.

    Article  Google Scholar 

  • Hashimoto, I. and Jackson, M. L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration: Clays and Clay Minerals, Proc. 7th Nat. Conf., Washington, D.C., 1958, Ada Swineford, ed., Pergamon Press, New York, 102–113.

    Google Scholar 

  • Jackson, M. L. (1975) Soil Chemical Analysis—Advanced Course: 2nd ed., Publ. by author, Madison, Wisconsin, 895 pp.

    Google Scholar 

  • Jackson, T. A. (1977) A relationship between crystallographic properties of illite and chemical properties of extractable organic matter in pre-Phanerozoic and Phanerozoic sediments: Clay & Clay Minerals 25, 187–195.

    Article  Google Scholar 

  • Johns, W. D., Grim, R. E., and Bradley, W. F. (1954) Quantitative estimations of clay minerals by diffraction methods: J. Sediment. Petrology 24, 242–251.

    Google Scholar 

  • Kinter, E. B. and Diamond, S. (1956) A new method for preparation and treatment of oriented specimens of soil clays for X-ray diffraction analysis: Soil Sci. 81, 111–120.

    Article  Google Scholar 

  • Lietzke, D. A. and Mortland, M. M. (1973) The dynamic character of a chloritized vermiculite soil clay: Soil Sci. Soc. Amer. Proc. 37, 651–656.

    Article  Google Scholar 

  • McKeague, J. A. and Day, J. H. (1966) Dithionite and oxalate extractable iron and aluminum as aids in differentiating various classes of soils: Can. J. Soil Sci. 46, 13–22.

    Article  Google Scholar 

  • Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: Clays and Clay Minerals, Proc. 7th Nat. Conf., Washington, D.C., 1958, Ada Swineford, ed., Pergamon Press, 317–327.

  • Murad, E. and Fischer, W. R. (1978) Mineralogy and heavy metal contents of soils and stream sediments in rural region of western Germany: Geoderma 21, 133–145.

    Article  Google Scholar 

  • Rainwater, F. O. H. and Thatcher, L. L. (1960) Methods for collection and analysis of water samples: Geol. Surv. Water Supply Paper 1454, 301 pp.

  • Redman, I. H. and Patrick, W. H. (1965) Effect of submergence on several biological and chemical soil properties: La. State Univ., Res. Bull. 592, 28 pp.

  • Rhoton, F. E., Smeck, N. E., and Wilding, L. P. (1979) Preferential clay mineral erosion from watersheds in the Maumee River Basin: J. Environ. Qual. 8, 547–550.

    Article  Google Scholar 

  • Wall, G. J. and Wilding, L. P. (1976) Mineralogy and related parameters of fluvial suspended sediments in northwestern Ohio: J. Environ. Qual. 5, 168–173.

    Article  Google Scholar 

  • Wall, G. J., Wilding, L. P., and Miller, R. H. (1974) Biological transformations of clay-sized sediments in simulated aquatic environments: Proc. 17th Conf. Great Lakes Res., 207–211.

  • Wall, G. J.,Wilding, L.P., and Smeck, N. E. (1978) Physical, chemical, and mineralogical properties of fluvial unconsolidated bottom sediments in northwestern Ohio: J. Environ. Qual. 7, 319–325.

    Article  Google Scholar 

  • Wilding, L. P., Smeck, N. E., and Drees, L. R. (1977) Silica in soils: Quartz, cristobalite, tridymite, and opal: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 471–552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Journal article No. 8–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Photon, F.E., Smeck, N.E. Equilibration of Clays in Natural and Simulated Bottom-Sediment Environments. Clays Clay Miner. 29, 17–22 (1981). https://doi.org/10.1346/CCMN.1981.0290103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1981.0290103

Key Words

Navigation