Skip to main content
Log in

Kaolinite, Smectite, and K-Rectorite in Bentonites: Relation to Coal Rank at Tulameen, British Columbia

  • Published:
Clays and Clay Minerals

Abstract

The Tulameen coal field is part of an Eocene nonmarine basin which received extensive volcaniclastic sediments due to its location within an active magmatic arc. Bentonite partings in the coal originally consisted of glassy rhyolitic tephra with phenocrysts of sanidine, biotite, and quartz. During the initial alteration, which took place within the swamp or shortly after burial, glass was transformed to either smectite-cristobalite-clinoptilolite or to smectite-kaolinite. The formation of kaolinite depended on the degree of leaching of silica and alkalies in the swamp environment. Some beds are nearly 100% kaolinite and can be designated as tonsteins. The smectite shows no evidence of interlayering; the kaolinite is well ordered. During alteration, sodium, originally a component of the glass, was lost from the system.

A later thermal event, which affected only the southern part of the basin, metamorphosed the smectite to a regularly interstratified illite/smectite with 55% illite layers and rectorite-type superlattice (IS-type). The source of potassium was dissolution of sanidine. Vitrinite reflectance measurements of the coal suggest that the smectite was stable to 145–160°C, at which temperature it transformed to K-rectorite.

The absence of randomly interstratified intermediates, even in beds rich in potassium, suggests that the transformation of smectite to K-rectorite was controlled by a steep thermal gradient possibly resulting from local magmatism or circulating geothermal fluids.

Резюме

Туламинский угольный бассейн является частью эоценового континентального бассейна, в который поступило большое количество вулканокластических отложений из-за его расположения в активном магматическом поясе. Бентонитовые прослои в угле первоначально состояли из стекловидной виолитовой тефры с фенокристаллами санидина, биотита, и кварца. Во время первоначального изменения, которое происходило в болотных условиях или вскоре после захоронения, стекло преобразовалось в смектит-кристобалит-клиноптилолит или в смектит-као-линит. Образование каолинита зависело от степени выщелачивания кремнезема и шелочей в болотной среде. Некоторые пласты состоят почти на 100% из каолинита и могут быть определены как тонштейн. Смектит является бейделлитовым и не проявляет признаков переслаивания; каолинит хорошо упорядочен. Во время изменения натрий, который первоначально входил в состав стекла, был удален из системы.

Позднее какое-то термическое событие, которое повлияло только на южную часть бассейна, превратило смектит в равномерно переслаивающийся иллит-смектит с 55% иллитовых слоев и сверхструктурой ректоритового типа (тип 18). Источником калия служило растворение санидина. Измерения витринитовых отражений угля показывают, что смектит был стойким до температур 145-160°С, при которых он превращался в К-ректорит. Отсутствие беспорядочно переслаивающихся промежуточных звеньев даже в богатых калием пластах указывает на то, что преобразование смектита в К-ректорит было обусловлено значительным термальным градиентом, возможно происшедшим из-за местного магматизма или циркуляции геотермальных растворов. [N.R.]

Resümee

Das Kohlengebiet von Tulameen ist Teil eines eozänen, nichtmarinen Beckens, das aufgrund seiner Lage in einem aktiven Magmenbogen sehr viele vulkanoklastische Sedimente enthält. Die Bentonitanteile in der Kohle waren ursprünglich glasige, rhyolithische Tephra mit Einsprenglingen von Sanidin, Biotit, und Quarz. Zu Beginn der Umwandlung, die im Schlamm oder kurz nach der Überdeckung stattfand, wurde das Glas entweder in Smektit-Cristobalit-Klinoptilolit oder in Smektit-Kaolinit umgewandelt. Die Bildung von Kaolinit hängt vom Auslaugungsgrad des SiO2 und der Alkalien im Schlamm ab. Einige Lagen bestehen aus nahezu 100% Kaolinit und können als Tonstein bezeichnet werden. Der Smektit ist beidellitisch und zeigt keine Anzeichen von Zwischenlagen; der Kaolinit ist gut geordnet. Während der Umwandlung ging Natrium, das ursprünglich eine Komponente des Glases war, aus dem System verloren.

Ein späteres thermales Ereignis, das nur den südlichen Teil des Beckens betraf, wandelte den Smektit in eine reguläre Wechsellagerung Illit-Smektit um, mit 55% Illitlagen und einem Gitter vom Rektorittyp (IS-Typ). Das Kalium kam von der Auflösung des Sanidins. Messungen des Reflexionsvermögens am Vitrinit der Kohle deuten darauf hin, daß der Smektit bis zur Temperatur zu 145–160°C stabil war, bei der er in K-Rektorit umgewandelt wurde. Das Fehlen von Übergangsphasen mit unregelmäßigen Wechsellagerungsstrukturen, selbst in den Kalium-reichen Lagen, deutet darauf hin, daß die Umwandlung von Smektit in K-Rectorit durch einen steilen thermischen Gradienten bestimmt wurde, der möglicherweise mit einem lokalen Magnetismus oder mit zirkulierenden geothermalen Lösungen zusammenhängt. [U.W.]

Résumé

Le champ charbonnier Tulameen fait partie d’un bassin non marin éocien qui recevait des sédiments volcaniclastiques extensifs dûs à son emplacement duns un arc magmatique actif. Des délitations de bentonite dans le charbon consistaient originalement de tephra vitreux rhyolitiques avec des phénocrystes de sanidine, de biotite, et de quartz. Pendant la période initiale d’altération, qui s’est deroulée dans le marais ou peu après enterrement, le verre a été transformé soit en de la smectite-cristobalite-clinoptilolite, soit en de la smectite-kaolinite. La formation de kaolinite dépendait du degré de lessivage de la silice et des alcalins dan l’environement marécageux. Certains lits sont presque 100% kaolinite et pourraient être designés tonstein. La smectite est beidellitique et ne montre aucune évidence d’interstratification, la kaolinite est bien ordonnée. Pendant l’altération, le système a perdu le sodium, originalement un composé du verre.

Un évenement thermique subséquent, qui n’a affecté que la partie sud du bassin, a metamorphosé la smectite en une illite/smectite régulièrement interstratifiée avec 55% de couches d’illite et un super-réseau du type rectorite (type IS). La source du potassium était la dissolution de sanidine. Des mesures de réflectance de vitrinite du charbon suggèrent que la smectite était stable jusqu’à 145°–160°C, température à laquelle elle a été transformée en rectorite-K. L’absence d’intermédiaires interstratifiés au hasard suggère que la transformation de smectite en rectorite-K était controllée par un gradient thermique résultant possiblement d’un magmatisme local ou de fluides géothermiques circulants. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohor, B. F., Pollastro, R. M., and Phillips, R. E. (1978) Mineralogical evidence for the volcanic origin of kaolinitic partings (tonstein) in Upper Cretaceous and Tertiary coals of the Rocky Mountain Region: in Program and Abstracts, 15th Annual Meeting, Clay Minerals Soc, Bloomington, Indiana, p. 47.

    Google Scholar 

  • Bostick, N. H. (1979) Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures—A review: in Aspects of Diagenesis, P. A. Scholle and P. R. Schluger, eds., Soc. Econ. Paleontol. Mineral. Spec. Publ. 26, 17–43.

    Article  Google Scholar 

  • Bramlette, M. N. and Posnjak, E. (1933) Zeolite alteration of pyroclastics: Amer. Mineral. 18, 492–493.

    Google Scholar 

  • Castano, J. R. and Sparks, D. M. (1974) Interpretation of vitrinite reflectance measurements in sedimentary rocks and determination of burial history using reflectance and authigenic minerals: in Carbonaceous Materials as Indicators of Metamorphism, R. R. Dutcher, ed., Geol. Soc. Amer. Spec. Pap. 153, 31–53.

    Article  Google Scholar 

  • Davies, D., Almon, W. R., Bonis, S. B., and Hunter, B. E. (1979) Deposition and diagenesis of Tertiary-Holocene vol-caniclastics, Guatemala: in Aspects of Diagenesis, P. A. Scholle and P. R. Schluger, eds., Soc. Econ. Paleontol. Mineral. Spec. Publ. 26, 281–306.

    Article  Google Scholar 

  • Davis, G. A. (1977) Tectonic evolution of the Pacific Northwest from Precambrian to present: WNP-I/4, PSAR, Amendment 23, Subappendix 2RC (report to the Nuclear Regulatory Commission), Washington Public Power Supply Systems, 46 pp.

    Google Scholar 

  • Deffeyes, K. S. (1959) Zeolites in sedimentary rocks: J. Sediment. Petrology 29, 602–609.

    Google Scholar 

  • Dickinson, W. R. (1979) Cenozoic plate tectonic setting of the Cordilleran region in the United States: in Cenozoic Paleogeography of the Western United States, J. M. Armentrout, M. R. Cole, and H. TerBest, Jr., eds., Pacific Coast Paleogeography Symp. 3, Pacific Section, Soc. Econ. Paleontol. Mineral. 1–13.

    Google Scholar 

  • Divis, A. F. and McKenzie, J. A. (1975) Experimental au-thigenesis of phyllosilicates from feldspathic sands: Sedi-mentology 22, 147–155.

    Article  Google Scholar 

  • Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low grade metamorphism: A review: Sedimentology 15, 281–346.

    Article  Google Scholar 

  • Eberl, D. D. (1978a) Reaction series for dioctahedral smectites: Clays & Clay Minerals 26, 327–340.

    Article  Google Scholar 

  • Eberl, D. D. (1978b) The reaction of montmorillonite to mixed-layer clay. The effect of interlay er alkali and alkaline earth cations: Geochim. Cosmochim. Acta 42, 1–7.

    Article  Google Scholar 

  • Hay, R. L. (1978) Geologic occurrence of zeolites: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, N.Y., 135–145.

    Google Scholar 

  • Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., and Miller, J. (1978) Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea: Sedimentology 25, 155–181.

    Article  Google Scholar 

  • Helgeson, H. C., Brown, T. H., and Leeper, R. H. (1969) Handbook of Theoretical Activity Diagrams Depicting Chemical Equilibria in Geologic Systems Involving an Aqueous Phase at One Atm. and 0° to 300°C: Freeman, Cooper and Company, San Francisco, Calif., 253 pp.

    Google Scholar 

  • Henderson, J. H., Jackson, M. L., Syers, J. K., Clayton, R. N., and Rex, R. W. (1971) Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites: Clays & Clay Minerals 19, 229–238.

    Article  Google Scholar 

  • Hills, L. V. and Baadsgaard, H. (1967) Potassium-argon dating of some lower Tertiary strata in British Columbia: Bull. Can. Petrol. Geol. 15, 138–149.

    Google Scholar 

  • Hoffman, J. and Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A.: in Aspects of Diagenesis, P. A. Scholle and P. R. Schluger, eds., Soc. Econ. Paleontol. Mineral. Spec. Publ. 26, 55–79.

    Article  Google Scholar 

  • Horton, D. G. (1978) Clay Mineralogy and Origin of the Huntingdon Fire Clays on Canadian Sumas Mountain, Southwest British Columbia: M.Sc. thesis, Western Washington University, Bellingham, Washington, 96 pp. (unpublished).

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence: Geol. Soc. Amer. Bull. 87, 725–737.

    Article  Google Scholar 

  • Iijima, A. (1978) Geological occurrences of zeolite in marine environments: in Natural Zeolites: Occurrence, Properties, Use: L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, N.Y., 175–198.

    Google Scholar 

  • Jackson, M. L. (1974) Soil Chemical Analysis—Advanced Course. 2nd Ed., 9th printing: Published by the author, Dept. of Soil Science, Univ. of Wisconsin, Madison, Wise, 895 pp.

    Google Scholar 

  • Jones, J. B. and Segnit, E. R. (1971) The nature of opal I. Nomenclature and constituent phases: J. Geol. Soc. Aust. 18, Part I, 57–67.

    Article  Google Scholar 

  • Keith, T. E., White, D. E., and Beeson, M. H. (1978) Hydrothermal alteration and self-sealing in Y-7 and Y-8 drill holes in northern part of Upper Geyser Basin, Yellowstone NationalPark, Wyoming: U.S. Geol. Surv. Prof. Pap. 1054-A, 1–26.

    Google Scholar 

  • Kisch, H. J. (1968) Coal-rank and burial-metamorphic mineral facies: in Advances in Organic Geochemistry: P. A. Schenk and I. Havenaar, eds., Pergamon Press, Elmsford, N.Y., 407–425.

    Google Scholar 

  • Loughnan, F. C. (1978) Flint clays, tonsteins and the kaolin-ite clayrock facies: Clay Miner. 13, 387–400.

    Article  Google Scholar 

  • MacEwan, D. M. (1956) Fourier transform methods for studying scattering from lamellar systems. I. A direct method for analysing interstratifled mixtures: Kolloid Z. 149, 96–108.

    Article  Google Scholar 

  • Mueller, R. F. and Saxena, S. K. (1977) Chemical Petrology: Springer-Verlag, New York, 394 pp.

    Book  Google Scholar 

  • Muffler, P. and White, D. E..(1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea Geothermal Field and the Salton Trough, southeastern California: Geol. Soc. Amer. Bull. 80, 157–182.

    Article  Google Scholar 

  • Mumpton, F. A. (1960) Clinoptilolite redefined: Amer. Mineral. 45, 351–369.

    Google Scholar 

  • Murata, K. J. and Whiteley, K. R. (1973) Zeolites in the Miocene Briones Sandstone and related formations of the Central Coast Ranges, California: J. Res. U.S. Geol. Surv. 1, 255–265.

    Google Scholar 

  • Okulitch, A. V., Price, R. A., and Richards, T. A. (1977) A guide to the geology of the southern Canadian Cordillera: Geol. Assoc. Can-Mineral. Assoc. Can.-Soc. Econ. Geol. Field Trip Guidebook 8, 135 pp.

  • Perry, E. A. and Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments: Clays & Clay Minerals 18, 165–177.

    Article  Google Scholar 

  • Reynolds, R. C., Jr. (1967) Interstratifled clay systems: Calculation of the total one-dimensional diffraction function: Amer. Mineral. 52, 661–672.

    Google Scholar 

  • Reynolds, R. C., Jr. and Anderson, D. M. (1967) Cristobalite and clinoptilolite in bentonite beds of the Colville Group, northern Alaska: J. Sediment. Petrology 37, 966–969.

    Article  Google Scholar 

  • Reynolds, R. C., Jr. and Hower, J. (1970) The nature of in-terlayering in mixed-layer illite-montmorillonite: Clays & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Sheppard, R. A. and Gude, A. J., 3rd (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California: U.S. Geol. Surv. Prof. Pap. 634, 36 pp.

  • Spears, D. A. and Kanaris-Sotiriou, R. (1979) Ageochemical and mineralogical investigation of some British and other European tonsteins: Sedimentology 26, 407–425.

    Article  Google Scholar 

  • Środoń, J. (1979) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin: in International Clay Conference 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 251–260.

    Google Scholar 

  • Środoń, J. (1980) Precise X-ray identification of illite/smec-tites: Clays & Clay Minerals 28, (in press).

  • Stach, E., MacKowsky, M. Th., Teichmuller, M., Taylor, G. H., Chandra, D., and Teichmuller, R. (1975) Stach’s Textbook of Coal Petrology: Gebruder Borntraeger, Berlin, 398 pp.

    Google Scholar 

  • Steiner, A. (1968) Clay minerals in hydrothermally altered rocks at Wairakei, New Zealand: Clays & Clay Minerals 16, 193–213.

    Article  Google Scholar 

  • Thompson, G., Fields, R. W., and Alt, D. (1978) Major Tertiary climate variations in the western United States as indicated by paleosol mineralogy and sedimentation patterns: in Program and Abstracts, 15th Annual Meeting, Clay Minerals Soc, Bloomington, Indiana, p. 35.

    Google Scholar 

  • Williams, V. E. (1978) Coal Petrology of the Tulameen Coalfield, South-Central British Columbia: M.Sc. thesis, Western Washington University, Bellingham, Washington, 77 pp. (unpublished).

    Google Scholar 

  • Williams, V. E. and Ross, C. A. (1979) Depositional setting and coal petrology of Tulameen Coalfield, South-Central British Columbia: Amer. Ass. Petrol. Geol. Bull. 63, 2058–2069.

    Google Scholar 

  • Wright, T. L. (1968) X-ray and optical study of alkali feldspar—Pt. 2: Amer. Mineral. 53, 88–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pevear, D.R., Williams, V.E. & Mustoe, G.E. Kaolinite, Smectite, and K-Rectorite in Bentonites: Relation to Coal Rank at Tulameen, British Columbia. Clays Clay Miner. 28, 241–254 (1980). https://doi.org/10.1346/CCMN.1980.0280401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1980.0280401

Key Words

Navigation