Clays and Clay Minerals

, Volume 28, Issue 2, pp 92–96 | Cite as

Effect of SiO2/Al2O3 Ratio on the Thermal Reactions of Allophane

  • Teruo Henmi


Differences were found in the differential thermal analysis curves and in the temperatures of new-phase development between allophanes of high (1.91–1.99) and low (1.47–1.53) SiO2/Al2O3 ratios. The endothermic peak due to continuous dehydration and dehydroxylation was at higher temperatures (153°-185°C) for allophanes with high SiO2/Al2O3 ratios and at lower temperatures (148°–165°C) for those with low SiO2/Al2O3 ratios. The temperature of the exothermic peak was lower and the height affected more by the exchangeable cation content for allophanes with high ratios than for those with low ratios. New phases did not develop in allophanes having high Si02/Al2O3 ratios even after they were heated to 1000°C, above the temperature of the exothermic peak. In contrast, a symptomatic development of new phases was noted in allophanes with low SiO2/Al2O3 ratios at 900°C, below the temperature of the exothermic peak. The effect of SiO2/Al2O3 ratio in the thermal behavior of allophane strongly suggests that differences in the structure are closely associated with the chemical composition of this material.

Key Words

Allophane Dehydration Dehydroxylation DTA Silica/alumina ratio Thermal reactions 


Были обнаружены различия в кривых дифференциального термического анализа и в температурах развития новой фазы между аллофанами высоких (1,91-1,99) и низких (1,47-1,53) отношений SiO2/А12O3. Эндотермический пик из-за постоянной дегидротации и дегидроксилиро-вания наблюдался при высоких температурах (153°–185°С) для аллофанов с высокими отношениями SiO2/Аl2O3 и при низких температурах (148°–165°С) для аллофанов с низкими отношениями SiO2/А12O3. Для аллофанов с высокими отношениями температура эндотермического пика была ниже и высота более обусловлена содержанием обменных катионов, чем для аллофанов с низкими отношениями. Новые фазы не развились в аллофанах с высокими отношениями §Ю2/А1203 даже после подогрева до 1000°С, выше температуры экзотермического пика. Наоборот, симптоматическое развитие новых фаз было замечено в аллофанах с низкими отношениями SiO2/Аl2O3 при 900°С, ниже температуры экзотермического пика. Влияние отношения SiO2/А12O3 на термическое поведение аллофанов указывает на то, что различия в структуре тесно связаны с химическим составом этого материала. [N. R.]


Bei den DTA-Kurven und bei den Bildungstemperaturen neuer Phasen wurden Unterschiede zwischen Allophanen mit hohen (1,91 bis 1,99) und niedrigen (1,47 bis 1,53) SiO2/Al2O3-Verhältnissen gefunden. Der endotherme Peak, verursacht durch die ständige Dehydrierung und Dehydroxylierung, war für Allophane mit hohem SiO2Al2O3-Verhältnis bei höheren Temperaturen (153° bis 195°C). Für Allophane mit niedrigem SiO2/Al2O3-Verhältnis war er bei niedrigeren Temperaturen (148° bis 165°C). Bei Allophanen mit großen Verhältniszahlen war die Temperatur des endothermen Peaks niedriger, und die Höhe mehr durch die austauschbaren Kationen beeinflußt, als bei solchen mit kleinen Verhältniszahlen. In Allophanen mit hohen SiO2/Al2O3-Verhältnissen wurden keine neuen Phasen gebildet, selbst wenn sie auf über 1000°C, über die Temperatur des exothermen Peaks, erhitzt wurden. Im Gegensatz dazu wurde bei Allophanen mit niedrigen SiO2/Al2O3-Verhältnissen die symptomatische Bildung neuer Phasen bei 900°C, unter der Temperatur des exothermen Peaks, beobachtet. Die Wirkung des SiO2/Al2O3-Verhältnisses auf das thermische Verhalten von Allophan legt die Annahme nahe, daß Unterschiede in der Struktur eng mit der chemischen Zusammensetzung dieses Materials zusammenhängen. [U. W.]


Des différences ont été trouvées dans les courbes d’analyse thermale différentielle et dans les températures de développement de nouvelle phase entre les allophanes aux proportion hautes (1,91–1,99) et basses (1,47–1,53) de SiO2/Al2O3. Le sommet endothermique dû à la déshydration et à la déshydroxy-lation continuelles était à des températures plus hautes (153°–185°C) pour des allophanes avec des proportions élevées de SiO2/Al2O3 et à de plus basses températures (148°–165°C) pour celles avec les proportions les plus basses. De nouvelles phases ne sont pas développées dans les allophanes ayant des proportions élevées de SiO2/Al2O3, même après échauffement à 1000°C, au-delà de la température du sommet exothermique. Par contraste, un développement symptomatique de nouvelles phases a été noté dans les allophanes ayant de basses proportions de SiO2/Al2O3 à 900°C, en dessous de la température du sommet exothermique. L’effet de la proportion de SiO2/Al2O3 dans le comportement thermal de l’allophane suggère fortement que les différences dans la structure sont associées de près avec la composition chimique de ce matériel. [D. J.]


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barshad, I. (1965) Thermal analysis techniques for mineral identification and mineralogical composition: in Methods of Soil Analysis, Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, C. A. Black, Ed., Amer. Soc. Agron., 699–742.Google Scholar
  2. Brindley, G. W. and Fancher, D. (1969) Kaolinite defect structure; possible relation to allophane: Proc. Int. Clay Conf. 1969 2, 29–34.Google Scholar
  3. Campbell, A. S., Mitchell, B. D., and Bracewell, J. M. (1968) Effect of particle size, pH and organic matter on the thermal analysis of allophane: Clay Miner. 7, 451–454.CrossRefGoogle Scholar
  4. Egawa, T. (1964) A study on coordination number of aluminum in allophane: Clay Sci. 2, 1–7.Google Scholar
  5. Fieldes, M. (1955) Clay mineralogy of New Zealand soils, Part II: allophane and related mineral colloids: N. Z. J. Sci. Technol. B 37, 336–350.Google Scholar
  6. Fieldes, M. (1957) Clay mineralogy of New Zealand soils, Part 4: differential thermal analysis: N. Z. J. Sci. Technol. B 38, 533–570.Google Scholar
  7. Fieldes, M. and Claridge, G. G. C. (1975) Allophane: in Soil Components Vol. 2 Inorganic Components, J. E. Gieseking, ed., Springer-Verlag, New York, 351–393.CrossRefGoogle Scholar
  8. Henmi, T. (1977) The dependence of surface acidity on chemical composition (SiO2/Al2O3 molar ratio) of allophanes: Clay Miner. 12, 356–358.CrossRefGoogle Scholar
  9. Henmi, T. and Wada, K. (1976) Morphology and composition of allophane: Amer. Miner. 61, 379–390.Google Scholar
  10. Higashi, T. and Ikeda, H. (1974) Dissolution of allophane by acid oxalate solution: Clay Sci. 4, 205–212.Google Scholar
  11. Jackson, M. L. (1956a) Dispersion of soil minerals: in Soil Chemical Analysis—Advanced Course, Published by the author, 31–95.Google Scholar
  12. Jackson, M. L. (1956b) Differential thermal analysis of soil minerals: in Soil Chemical Analysis—Advance Course, Published by the author, 251–329.Google Scholar
  13. Kitagawa, Y. (1971) The “unit particle” of allophane: Amer. Miner. 56, 465–475.Google Scholar
  14. Mackenzie, R. C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets: in Differential Thermal Analysis Vol. I, R. C. Mackenzie, ed., Academic Press, London, 498–537.Google Scholar
  15. Mackenzie, R. C. and Mitchell, B. D. (1970) Technique: in Differential Thermal Analysis Vol. 1, R. C. Mackenzie, ed., Academic Press, London, 101–122.Google Scholar
  16. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system with sodium bicarbonate buffer: Clays & Clay Minerals 7, 317–327.CrossRefGoogle Scholar
  17. Mitchell, B. D., Farmer, V. C., and McHardy, W. J. (1964) Amorphous inorganic materials in soils: Adv. Agron. 16, 327–383.CrossRefGoogle Scholar
  18. Miyauchi, N. and Aomine, S. (1966) Effect of exchangeable cations on the high temperature exothermic peak of allophane: Soil Sci. Plant Nutr. 12, 13–17.CrossRefGoogle Scholar
  19. Miyazawa, K. (1966) Clay mineral composition of andosoils in Japan—with reference to their classification: Bull. Nat. Inst. Agr. Sci. B 17, 1–100.Google Scholar
  20. Okada, K., Morikawa, S., Iwai, S., Ohira, Y., and Ossaka, J. (1975) A structural model of allophane: Clay Sci. 4, 219–303.Google Scholar
  21. Ossaka, J. (1960) On the hydro-alumina silicate minerals from Mt. Asama: Adv. Clay Sci. 2, 339–349.Google Scholar
  22. Ossaka, J. (1961) On the mechanism of formation of precipitated allophane: Adv. Clay Sci. 3, 225–233.Google Scholar
  23. Ossaka, J. (1962) On the heat transformation of hydrated low crystalline materials from system SiO2-Al2O3: Adv. Clay Sci. 4, 33–47.Google Scholar
  24. Shoji, S. and Saigusa, M. (1977) Amorphous clay materials of Towada Andosoils: Soil Sci. Plant Nutr. 23, 437–455.CrossRefGoogle Scholar
  25. Udagawa, S., Nakada, T., and Nakahira, M. (1969) Molecular structure of allophane as revealed by its thermal transformation: Proc. Int. Clay Conf. (Tokyo) Vol. 1, 151–159.Google Scholar
  26. Wada, K. (1977) Allophane and imogolite: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Sci. Soc. Amer., 603–638.Google Scholar
  27. Wada, K. (1978) Structural formulas of allophanes: Proc. Int. Clay Conf. (Oxford), 537–545.Google Scholar
  28. Wada, K. and Harward, M. E. (1974) Amorphous clay constituents of soils: Adv. Agron. 26, 211–260.CrossRefGoogle Scholar
  29. Wada, K., Henmi, T., Yoshinaga, N., and Patterson, S. H. (1972) Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii: Clays & Clay Minerals 20, 375–380.CrossRefGoogle Scholar
  30. Wada, K. and Wada, S. (1976) Clay mineralogy of the B horizon of two Hydrandepts, a Torrox and a Humitropept in Hawaii: Geoderma 16, 139–157.CrossRefGoogle Scholar
  31. Wada, K. and Yoshinaga, N. (1969) The structure of imogolite: Amer. Miner. 54, 50–71.Google Scholar
  32. Wada, K., Yoshinaga, N., Yotsumoto, H., Ibe, K., and Aida, S. (1970) High resolution electron micrographs of imogolite: Clay Miner. 8, 487–489.CrossRefGoogle Scholar
  33. Wada, S. and Wada, K. (1977) Density and structure of allophane: Clay Miner. 12, 289–298.CrossRefGoogle Scholar
  34. Wells, N., Childs, C. W., and Downes, C. J. (1977) Silica spring, Tongariro national park, New Zealand—analyses of the spring water and characterization of the alumino-silicate deposit: Geochem. Cosmochim. Acta 41, 1497–1506.CrossRefGoogle Scholar
  35. Yoshinaga, N. (1966) Chemical composition and some thermal data of eighteen allophanes from andosoils and weathered pumices: Soil Sci. Plant Nutr. 12, 47–54.CrossRefGoogle Scholar
  36. Yoshinaga, N., Yotsumoto, H., and Ibe, K. (1968) An electron microscopic study of soil allophane with an ordered structure: Amer. Miner. 53, 319–323.Google Scholar

Copyright information

© Clay Minerals Society 1980

Authors and Affiliations

  • Teruo Henmi
    • 1
  1. 1.Faculty of AgricultureEhime UniversityMatsuyamaJapan

Personalised recommendations