Skip to main content
Log in

Kaolinite Synthesis. II. A Review and Discussion of the Factors Influencing the Rate Process

  • Published:
Clays and Clay Minerals

Abstract

Kaolinite is synthesized in approximately the same time in three temperature ranges: (1) from 200–250° to 350–400° (hydrothermal processes); (2) from 120 to 175° (semihydrothermal ones); (3) at ordinary temperature. It is thus evident that the rate process cannot be explained by the Arrhenius equation only, but is explained well by considering that kaolinite formation obeys the laws of crystal growth. It occurs only in slightly supersaturated solutions in which the nucleation process is possible and in which a slow and regular rate of growth has been insured. Concentrations calculated from the thermodynamical equilibria correspond to those of the experimental conditions for the low temperature processes. For the higher temperature ones, a similar relationship is delineated, at least as far as the thermodynamical treatment can be carried out.

Абстракция

Каолинит был синтезирован примерно за одинаковое время при трех диапазонах температур:1) от 200–250 до 350–400° (гидротермальные процессы); 2) от 120 до 175° (полу-гидротермальные процессы); 3) при обычной температуре. Это свидетельствует, что скорость процесса не может быть объяснена только уравнением Аррхениуса,но хорошо объясняется, если полагать, что формирование каолинита подчиняется законам роста кристаллов. Это наблюдается только в слегка пересыщенных растворах, в которых возможен процесс образования центров кристаллизации и в которых обеспечивается низкая и нормальная скорость роста кристаллов. Концентрации, вычисленные из термодинамических уравнений равновесия, соответствуют уравнениям, полученным из эксперементаль-ных условий для низкотемпературных процессов. Для высокотемпературных процессов установлены аналогичные взаимоотношения, по крайней мере до тех пор, пока может проводиться термодинамическая обработка.

Zusammenfassung

Kaolinit wird innerhalb derselben Zeit in drei Temperaturbereichen synthetisiert:(l)von 200–250° bis 350–400° (hydrothermisches Verfahren); (2) von 120°bis 175° (semihydrothermisches);(3) bei gewöhnlicher Temperatur. Es ist daher klar, daß das Geschwindigkeitsverfahren nicht alleine mit der Arrheniusgleichung erklärt werden kann, aber es kann gut erläutert werden indem man in Betracht zieht, daß die Kaolinitbildung die Gesetze des Kristall Wachstums einhält. Es kommt nur in leicht übersättigten Lösungen vor, in welchen Nukleation stattfinden kann und in welchen langsames, regelmäßiges Wachsen gesichert ist. Konzentrationen, welche von den thermodynamischen Gleichgewichten errechnet werden, stimmen mit den experimentalen Bedingungen für das Verfahren bei niedriger Temperatur überein. Für die Verfahren bei höherer Temperatur kann eine ähnliche Verwandtschaft abgeleitet werden, zumindest solange wie die thermodynamische Behandlung ausgeführt werden kann.

Résumé

La kaolinite est synthétisée à peu près en même temps dans trois étendues de température: (1) de 200°–250° à 350–400°(procédés hydrothermiques); (2) de 120 à 175°(procédés semi-hydrothermiques);(3) à température normale. Il est donc évident que le procédé de vitesse ne peut pas être expliqué par l’équation d’Arrhénius uniquement, mais est bien expliqué en considérant que la formation de kaolinite suit les lois de croissance de cristaux. Cette formation ne survient que dans des solutions à peine super-saturées dans lesquelles le procédé de nucléation est possible et dans lesquelles une vitesse de croissance lente et régulière est assurée. Les concentrations calculées d’après les équilibres thermiques correspondent à celles des conditions expérimentales pour les procédés à basse température. Pour ceux à haute température, une parentée similaire est es-quisée,du moins jusqu’au point où le traitement thermodynamique peut être exécuté.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caillère, S. and Hénin, S. (1962) Vues d’ensemble sur le problème de la synthèse des minéraux phylliteux à basse température: Colloque sur la genèse et la synthèse des argiles, C.N.R.S., No. 105, Paris, 31–43.

    Google Scholar 

  • Crowley, M. S. and Roy, R. (1960) The effect of formation processes on sheet structure—a possible case of Al-Si ordering: Geochim. Cosmochim. Acta 18, 94–100.

    Article  Google Scholar 

  • De Kimpe, C. (1967) Hydrothermal aging of synthetic alumino-silicate gels: Clay Miner. 7, 203–214.

    Article  Google Scholar 

  • De Kimpe, C. (1969) Crystallization of kaolinite at low temperature from an alumino-silicic gel: Clays & Clay Minerals 17, 37–38.

    Article  Google Scholar 

  • De Kimpe, C. and Fripiat, J. J. (1968) Kaolinite crystallization from H-exchanged zeolites: Am. Mineral. 53, 216–230.

    Google Scholar 

  • De Kimpe, C., Gastuche, M. C. and Brindley, G. W. (1964) Low temperature synthesis of clay minerals: Am. Mineral. 49, 1–16.

    Google Scholar 

  • Dennfeld, F., Siffert, B. and Wey, R. (1970) Étude de l’influence des complexants de l’aluminium et du broyage sur la formation hydrothermale de la kaolinite: Bull. Groupe Fr. Argiles 12, 179–190.

    Article  Google Scholar 

  • De Vijnck, Y. (1973) Étude des phases cristallines appartenant au système par Al2O3-SiO2-H2O formées par traitement hydrothermal de gels obtenus par coprécipitation d’Al(OH)3 et de Si(OH)4: Silic. Ind. 38, (10) 193–211.

    Google Scholar 

  • De Vijnck, Y. (1975) Action des ions alcalins sur la transformation hydrothermale de gels silico-alumineux. I. Influence de l’ion Li+: Silic. Ind. 40, (10) 259–272.

    Google Scholar 

  • De Vijnck, Y. (1976) Action des ions alcalins sur la transformation hydrothermales de gels silico-alumineux. II. Influence de l’ion K+: Silic. Ind. 41, (2) 67–81.

    Google Scholar 

  • Eberl, D. and Hower, J. (1975) Kaolinite synthesis: the role of the Si/Al and the Alkali/H+ ratio in hydrothermal systems: Clays & Clay Minerals 23, 301–309.

    Article  Google Scholar 

  • Ewell, R. H. and Insley, H. V. (1935) Hydrothermal synthesis of kaolinite, dicbite, beidellite and nontronite: J. Res. Nat. Bur. Stand. 15, 173–186.

    Article  Google Scholar 

  • Fripiat, J. J. and Gastuche, M.-C. (1963) L’état d’organisation des produits de départ et la synthèse des argiles: Int. Clay Conf. Stockholm, 1963, 53–65, Pergamon Press.

    Google Scholar 

  • Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals and Equilibria. Harper and Row, New York, 450 pp.

    Google Scholar 

  • Gastuche, M.-C. (1964) The octahedral layer: Clays & Clay Minerals 471–493. Proc. 12th Nat. Congr. Atlanta, 1963.

    Google Scholar 

  • Glasstone, S. K., Laidler, J. and Eyring, H. (1941) The Theory of Rate Processes: McGraw-Hill Book Co., New York.

    Google Scholar 

  • Harder, H. (1970) Kaolinite-synthese bei niedrigen Temperature: Naturwissenschaften 57, 193.

    Article  Google Scholar 

  • Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures: Am. J. Sci. 267, 729–809.

    Article  Google Scholar 

  • Hem, J. D. and Lind, J. C. (1974) Kaolinite synthesis at at 25°C: Science 184, 1171–1173.

    Article  Google Scholar 

  • Keller, W. D. (1970) Environmental aspects of clay minerals. J. Sediment. Petrol. 40, 788–813.

    Google Scholar 

  • Kittrick, J. A. (1970) Precipitation of kaolinite at 25°C and 1 atm: Clays & Clay Minerals 18, 261–268.

    Article  Google Scholar 

  • Lagache, M. (1966) Synthèse de la boehmite, de la kaolinite et de la muscovite par altération de l’albite par l’eau à 200°C en présence de gaz carbonique: Bull. Groupe Fr. Argiles 17, 71–79.

    Article  Google Scholar 

  • Laidler, K. J. (1950) Chemical Kinetics: McGraw-Hill Book Co., New York.

    Google Scholar 

  • La Iglesia, A., Martin Caballero, J. L. and Martin Vivaldi, J. L. (1974) Formation de kaolinite par précipitation homogène à température ambiante. Emploi de feldspaths potassiques: C. R. Acad. Sci. Paris 279, 1143–1145.

    Google Scholar 

  • La Iglesia, A. and Martin Vivaldi, J. L. (1972) A contribution to the synthesis of kaolinite: Proc. Int. Clay Conf. Madrid, 1972, 173–185.

    Google Scholar 

  • La Iglesia, A. and Martin Vivaldi, J. L. (1975) Synthesis of kaolinite by homogeneous precipitation at room temperature. I. Use of anionic resins in OH− form. Clay Mineral. 10, 401–407.

    Article  Google Scholar 

  • La Iglesia, A., Martín Vivaldi, J. C. and Lopez Agayo (1976) Kaolinite crystallization at room temperature by homogeneous precipitation. III. Hydrolysis of feldspars: Clays & Clay Minerals 24, 36–42.

    Article  Google Scholar 

  • La Iglesia, A. and Serna, J. (1974) Cristalización de caolinita por precipitatión homogénea. II. Empleo de resinas catiónicas en fase H+: Estud. Geol. Madrid 30, 281–287.

    Google Scholar 

  • La Iglesia, A. and Van Oosterwyck-Gastuche, M.-C. (1978) Kaolinite synthesis I. Crystallization conditions for low temperature synthesis with an attempt to calculate the thermodynamical equilibria. Application to laboratory work and field observation: Clays & Clay Minerals 26, 397–408.

    Article  Google Scholar 

  • Leonard, A., Suzuki Sho, Fripiat, J. J. and De Kimpe, C. (1964) Structure and properties of amophous silica-aluminas. I. Structure from X-ray fluorescence spectroscopy and I.R. spectroscopy: J. Phys. Chem. 68, 2608–2617.

    Article  Google Scholar 

  • Linares, J. and Huertas, F. (1971) Kaolinite: synthesis at low temperature: Science 171, 896–897.

    Article  Google Scholar 

  • Lind, J. C. and Hem, J. D. (1975) Effect of organic solutes on chemical reactions of aluminum: U.S. Geol. Surv. Water Supply Pap. 1827-G, 83 pp.

  • Luth, W. C. and Ingamells, C. D. (1965) Gel preparation of starting materials for hydrothermal experimentation: Am. Mineral. 50, 255–260.

    Google Scholar 

  • NoU, W. (1935) Mineralbildung im System Al2O3-SiO2-H2O: Neues Jahrb. Mineral. Geol. Paeontol. Abh. Abt. A 70, 67–115.

    Google Scholar 

  • Noll, W. (1936) Über die Bildungsbedingungen von Kaolin, Montmorillonit, Sericit, Pyrophyllit und Analcim: Mineral. Petrog. Mitt. 48, 210–224.

    Google Scholar 

  • Noll, W. (1944) Anwendung der Elektronenmikroskopie beim studiumhydrothermaler Silikatreaktionen: Kolloid Z. 107, 181–190.

    Article  Google Scholar 

  • Ostapenko, G. T., Gorogotskaya, L. J. and Timoshka, L. P. (1975) Kinetics and mechanism of decomposition of kaolinite at 470° to 530° as a function of the water-vapor pressure: Dokl. Akad. Nauk S.S.S.R. 211, 151–153.

    Google Scholar 

  • Pedro, G. (1964) Contribution à l’étude expérimentale de l’altération géochimique des roches cristallines. Thèse: Fac. Sci. Paris, I.N.R.A., 149, rue de Grenelle, Paris VIIe, 344 pp.

    Google Scholar 

  • Poncelet, G. and Brindley, G. M. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures: Am. Mineral. 52, 1161–1173.

    Google Scholar 

  • Rayner, J. H. (1962) An examination of the rate of formation of kaolinite from a co-precipitated silica gel: Colloque sur la genèse et la synthèse des argiles, C.N.R.S., No. 105, Paris, 123–127.

    Google Scholar 

  • Rodrique, L., Poncelet, F. and Herbillon, S. (1972) Importance of silica subtraction process during the hydrothermal kaolinization of amorphous silica-aluminas: Proc. Int. Clay Conf., Madrid, 1972, 187–198.

    Google Scholar 

  • Roy, R. (1962) The preparation and properties of synthetic clay minerals: Colloque sur la Genèse et la Synthèse des Argiles, C.N.R.S., No. 105, Paris, 83–98.

    Google Scholar 

  • Roy, R. and Osborn, E. F. (1952) Studies in the system alumina-silica-water. Problems of clays and latente genesis: Publ. Am. Inst. Min. Metall. Eng., 76–80, see also Erwin and Osborn (1951) The system A12O3-H2O: J. Geol. 59, 381–394.

    Google Scholar 

  • Roy, R. and Osborn, E. F. (1954) The system Al2O3-SiO2H2O. Am. Mineral. 39, 853–885.

    Google Scholar 

  • Schwarz, R. and Brenner, A. (1923) Ber. Dtsch. Chem. Ges. 56, 1433, reference from Noll, 1944.

    Article  Google Scholar 

  • Tchoubar, C. and Oberlin, A. (1966) Formation d’argile par altération d’albite à l’autoclave à 200°C: Bull. Groupe Fr. Argiles 18, 51–57.

    Article  Google Scholar 

  • Tugarinov, A. I. and Naumov, V. B. (1973) Physico-chemical parameters of hydrothermal mineral formation: Geochem. Int. 1973, 161–167. Transl, from Geokhimiya 3, 259–265 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Oosterwyck-Gastuche, M.C., La Iglesia, A. Kaolinite Synthesis. II. A Review and Discussion of the Factors Influencing the Rate Process. Clays Clay Miner. 26, 409–417 (1978). https://doi.org/10.1346/CCMN.1978.0260604

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1978.0260604

Key Words

Navigation