Skip to main content
Log in

Reaction Series for Dioctahedral Smectites

  • Published:
Clays and Clay Minerals

Abstract

Several dioctahedral clay minerals are related through reaction series. These series can be produced hydro-thermally from beidellite gel and montmorillonite by making simple changes in interlayer and solution chemistry. The series are:

  • gel-K-beidellite-random illite/smectite-K-rectorite-illite

  • K-montmorillonite-K-rectorite-illite

  • Na-montmorillonite or beidellite-Na-rectorite-paragonite

  • Li-montmorillonite-Li-tosudite-Li-rectorite-cookeite(?)

  • Mg-montmorillonite-Mg-rectorite-tosudite-sudoite(?)

  • Ca-montmorillonite-Ca-rectorite-margarite(?)

  • Al-Ca-montmorillonite-kaolinite/smectite-kaolinite (150°C)

  • Al-Ca-montmorillonite-pyrophyllite/smectite-pyrophyllite (320°C).

Assuming stability for the mixed-layer phases, paragenesis is a function of P, T, and X conditions. If the phases are considered to be metastable, paragenesis is a function of the speed and path of reaction.

Резюме

Несколько диоктаэдрических глинистых минералов связываются посредством реакционных серий. Эти серии могут быть получены гидротермически из бейделлитового геля и монтмориллонита в результате простых изменений в меж-слойных промежутках и в химии раствора. Этими сериями являются

гель—К-бейделлит —любой иллит/смектит—К-ректорит—иллит

К-монтмориллонит—К-ректорит—иллит

Na- монтмориллонит или бейделлит—Ыа-ректорит—парагонит

Li-монтмориллонит—Li-тосудит—Li-ректорит—кукеит(?)

Mg-монтмориллонит—Mg-ректорит—тосудит—судоит(?)

Ca-монтмориллонит—Са-ректорит—Маргарит(?)

Al-Ca-монтмориллонит—каолинит/смектит—каолинит(150°С)

Al-Ca-монтмориллонит—пирофиллит/смектит—пирофиллите 320°С)

Если предположить стабильность смешанно-слойных фаз,парагенезис является функцией условий Р,Т,Х. Если фазы рассматривать как неустойчивые,парагенезис является функцией скорости и пути реакции.

Kurzreferat

Mehrere dioktahedrische Tonmineralien gehören zu denselben Reaktionsserien. Diese Serien können aus Beidellitgel und Montmorillonit hydrothermisch hergestellt werden, indem einfache Änderungen in der Zwischenschicht-und Lösungschemie gemacht werden. Die Serien sind die folgenden:

  • Gel—K-Beidellit—nicht geordnetes Illit/Smektit—K-Rektorit—Illit

  • K-Montmorillonit—K-Rektorit—Illit

  • Na-Montmorillonit oder Beidellit—Na-Rektorit—Paragonit

  • Li-Montmorillonit—Li-Tosudit—Li-Rektorit—Cookeit (?)

  • Mg-Montmorillonit—Mg-Rektorit—Tosudit—Sudoit (?)

  • Ca-Montmorillonit—Ca-Rektorit—Margarit (?)

  • Al-Ca-Montmorillonit—Kaolinit/Smektit—Kaolinit (150°C)

  • Al-Ca-Montmorillonit—Pyrophyllit/Smektit—Pyrophyllit (320°C)

Wenn man annimmt, daß die gemischt-Schicht Phasen stabil sind, dann ist die Paragenesis eine Funktion der P,T,X Konditionen. Falls die Phasen für metastabil gehalten werden,dann ist die Paragenesis eine Funktion der Geschwind igkeit der Reaktion und des Reaktionsweges.

Résumé

Plusieurs minéraux argileux dioctaèdraux sont apparentés par des suites de réaction. Ces suites peuvent être produites de manière hydrothermale à partir de gels de beidellite et de montmorillonite en faisant de simples changements dans la chimie interfeuillet et de solution. Ces suites sont:

  • gel—K-beidellite—illite/smectite—K-rectorite—illite

  • K-montmorillonite—K-rectorite—illite

  • Na-montmorillonite, beidellite—Na-rectorite—paragonite

  • Li-montmorillonite—Li-tosudite—Li-rectorite—cookeite(?)

  • Mg-montmorillonite—Mg-rectorite—tosudite—sudoite(?) Ca-montmorillonite—Ca-rectorite—margarite(?)

  • Al-Ca-montmorillonite—kaolinite/smectite—kaolinite(150°C)

  • Al-Ca-montmorillonite—pyrophyllite/smectite—pyrophyllite(320°C)

Présumant un état de stabilité pour les phases à feuillets mélangés, la paragénèse est une fonction des conditions P,T,X. Si les phases sont considérées comme étant métastables, la paragénèse est une fonction de la vitesse et de la direction de réaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, Z. S., Dwornik, E. J. and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148–152.

    Article  Google Scholar 

  • Bailey, S. W. (1975) Chlorites. In, Soil Components, v. 2, Inorganic Components: (Edited by Gieseking, J. E.), pp. 191–263. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Bannister, F. A. (1943) Brammallite (sodium illite), a new mineral from Llandebie, South Wales: Mineral. Mag. 26, 304–307.

    Google Scholar 

  • Blatter, C. L., Roberson, H.E. and Thompson, G.T. (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana: Clays & Clay Minerals 21, 207–212.

    Article  Google Scholar 

  • Brackett, N. F. and Williams, J. F. (1891) Newtonite and rectorite. Am. J. Sci. 42, 11–21.

    Article  Google Scholar 

  • Brindley, G. W. and Sandalaki, Z. (1963) Structure, composition and genesis of some long-spacing, mica-like minerals: Am. Mineral. 48, 138–149.

    Google Scholar 

  • Brown, G. (1961) The X-ray Identification and Crystal Structure of Clay Minerals: Mineral. Soc, London, 544 pp.

    Google Scholar 

  • Brown, G. and Weir, A. H. (1963a) The identity of rectorite and allevardite: Int. Clay Conf. Proc. 1, Stockholm, 27–35.

    Google Scholar 

  • Brown, G. and Weir, A. H. (1963b) An addition to the paper, “The identity of rectorite and allevardite”: Int. Clay Conf. Proc. 2, Stockholm, 87–90.

    Google Scholar 

  • Brown, G., Bourguignon, P. B. and Thorez, J. (1974) A lithium bearing aluminum regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135–144.

    Article  Google Scholar 

  • Eberl, D. (1978) The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations: Geochim. Cosmochim. Acta 42, 1–7.

    Article  Google Scholar 

  • Eberl, D. and Hower, J. (1976) Kinetics of illite formation: Geol. Soc. Am. Bull. 87, 1326–1330.

    Article  Google Scholar 

  • Eberl, D. and Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay: Clays & Clay Minerals 25, 215–227.

    Article  Google Scholar 

  • Eberl, D., Whitney, G. and Khoury, H. (1978) Hydrothermal reactivity of smectite: Am. Mineral., in press.

    Google Scholar 

  • Eslinger, E. V. and Savin, S. (1973) Mineralogy and oxygen isotope geochemistry of hydrothermally altered rocks of the Ohaki-Broadlands, New Zealand geothermal area: Am. J. Sci. 273, 240–267.

    Article  Google Scholar 

  • Frank-Kamenetsky, V. A., Logvineko, N. V. and Dritz, V. A. (1963) Tosudite—a new mineral forming the mixed-layer phase in alushtite: Proc. Int. Clay Conf. 2, Stockholm, 181–186.

    Google Scholar 

  • Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology 15, 261–279.

    Article  Google Scholar 

  • Frey, M. (1974) Alpine metamorphism of pelitic and marly rocks of the central Alps: Schweiz. Mineral. Petrogr. Mitt. 54, 489–506.

    Google Scholar 

  • Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures: Am. J. Sci. 267, 729–804.

    Article  Google Scholar 

  • Henderson, G. V. (1971) The origin of pyrophyllite and rectorite in shales of north-central Utah: Clays & Clay Minerals 19, 239–246.

    Article  Google Scholar 

  • Hower, J. and Mowatt, T. C. (1966) Mineralogy of the illite-illite/mont-morillonite group: Am. Mineral. 51, 821–854.

    Google Scholar 

  • Hower, J., Eslinger, E., Hower, M. and Perry, E. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence: Geol. Soc. Am. Bull. 87, 725–737.

    Article  Google Scholar 

  • Ichikawa, A. and Shimoda, S. (1976) Tosudite from the Hokuno Mine, Hokuno, Gifu Prefecture, Japan: Clays & Clay Minerals 24, 142–148.

    Article  Google Scholar 

  • Jackson, M. L. (1975) Soil Chemical Analysis—Advanced Coarse. 2nd edition, 10th printing: Published by the author, Madison, Wis. 53705.

    Google Scholar 

  • Kanaoka, S. (1975) Tosudite-like clay minerals in pottery stone. In Contributions to Clay Mineralogy in Honor of Professor Toshio Sudo, 34–41.

    Google Scholar 

  • Kodama, H. (1958) Mineralogical study on some pyrophyllites in Japan: Mineral. J. (Japan) 2, 236.

    Article  Google Scholar 

  • Kodama, H. (1966) The nature of the component layers of rectorite: Am. Mineral. 51, 1035–1055.

    Google Scholar 

  • Lagaly, G. and Weiss, A. (1975) The layer charge of smectitic layer silicates: Int. Clay Conf. Proc. Mexico, 157–172.

    Google Scholar 

  • Lippmann, F. (1954) Über einen Keuperton von Zaisersweiher bei Maulbronn: Heidelb. Beitr. Mineral. Petrogr. 4, 130–134.

    Google Scholar 

  • Lippmann, F. (1976) Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper Formation: Bull. Int. Assoc. Eng. Geol. 13, 65–68.

    Article  Google Scholar 

  • Luth, W. C. and Ingamells, C. O. (1965) Gel preparation of starting materials for hydrothermal experimentation: Am. Mineral. 50, 255–260.

    Google Scholar 

  • MacEwan, D. M. C. and Ruiz-Amil, A. (1975) Interstratified clay minerals. In: Soil Components 2: Inorganic Components (Edited by Gieseking, J. E.), Springer-Verlag, 265–334.

    Chapter  Google Scholar 

  • Miser, H.D. and Milton, C. (1964) Quartz, rectorite and cookeite from the Jeffrey Quarry, near North Little Rock, Pulaski County, Arkansas: Arkansas Geol. Comm. Bull. 21, 29 pp.

  • Moll, W.F., Jr., Johns, W. D. and Van Olphen, H. (1975) Source clay minerals (abs.): Proc. Int. Clay Conf., Mexico, p. 465.

    Google Scholar 

  • Nemecz, E., Varju, G. and Barna, J. (1963) Allevardite from Kiralyhegy, Tokaj Mountains, Hungary: Proc. Int. Clay Conf. 2, Stockholm, 51–67.

    Google Scholar 

  • Nishiyama, T., Shimoda, S., Shimosaka, K. and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337–342.

    Article  Google Scholar 

  • Parachoniak, W. and Środoń, J. (1973) The formation of kaolinite, montmorillonite and mixed-layer montmorillonite-illites during the alteration of carboniferous tuff (the Upper Silesian Coal Basin): Mineral. Pol. 4, 37–52.

    Google Scholar 

  • Pedro, G. (1970) Report of the AIPEA Nomenclature Committee: AIPEA Newsletter 4, 3–4.

    Google Scholar 

  • Perry, E. and Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments: Clays & Clay Minerals 18, 165–178.

    Article  Google Scholar 

  • Reynolds, R. C., Jr. and Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites: Clays & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Rodriques, G. and Perez, A. (1965) A regular mixed-layer mica-beidellite: Clay Miner. 6, 119–122.

    Article  Google Scholar 

  • Sakharov, B. A. and Dritz, V. A. (1973) Mixed-layer kaolinite-mont-morillonite: a comparison of observed and calculated diffraction patterns: Clays & Clay Minerals 21, 15–17.

    Article  Google Scholar 

  • Schultz, L., Shepard, A., Blackman, P. and Starkey, H. (1970) Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico: Clays & Clay Minerals 19, 137–150.

    Article  Google Scholar 

  • Shimoda, S. (1969) New data for tosudite. Clays & Clay Minerals 17, 179–184.

    Article  Google Scholar 

  • Shirozu, H. and Higashi, S. (1976) Structural investigations of sudoite and regularly interstratified sericite/sudoite: Mineral. J. (Japan) 8, 158–170.

    Article  Google Scholar 

  • Shridhar, K. and Jackson, M. L. (1974) Layer charge decrease by tetrahedral cation removal and silicon incorporation during natural weathering of phlogopite to saponite: Soil Sci. Soc. Am. Proc. 38, 847–850.

    Article  Google Scholar 

  • Środoń, J. (1972) Mineralogy of coal-tonstein and K-bentonite from coal seam No. 610, Bytom Trough (Upper Silesian Coal Basin, Poland): Bull. Acad. Pol. Sci. Ser. Sci. Terre 20, 155–164.

    Google Scholar 

  • Środoń, J. (1976) Mixed-layer smectite/illites from carboniferous bentonites and tonsteins of Poland (abstr.): 25th Clay Miner. Conf., Corvallis, p. 36.

    Google Scholar 

  • Sudo, T., Hayashi, H. and Shimoda, S. (1962) Mineralogical problems of intermediate clay minerals: Clays & Clay Minerals 9, 378–392.

    Article  Google Scholar 

  • Suquet, H., Iiyama, J. T., Kodama, H. and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge: Clays & Clay Minerals 25, 231–242.

    Article  Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 1101–1116.

    Article  Google Scholar 

  • Thompson, G. R. and Hower, J. (1975) The mineralogy of glauconite: Clays & Clay Minerals 23, 289–300.

    Article  Google Scholar 

  • Velde, B. (1969) The compositional join muscovite-pyrophyllite at moderate pressures and temperatures: Bull. Soc. Fr. Mineral. Cristallogr. 92, 360–368.

    Google Scholar 

  • Velde, B. (1971) The stability and natural occurrence of margarite: Mineral. Mag. 38, 317–332.

    Article  Google Scholar 

  • Velde, B. (1972) Phase equilibria for dioctahedral expandable phases in sediments and sedimentary rocks: Proc. Int. Clay Conf., Madrid, 285–300.

    Google Scholar 

  • Velde, B. and Odin, G. S. (1975) Further information related to the origin of glauconite: Clays & Clay Minerals 23, 376–381.

    Article  Google Scholar 

  • Weaver, C. E. and Beck, K. C. (1971) Clay water diagenesis during burial: how mud becomes gneiss: Geol. Soc. Am. Spec. Pap. 134, 1–78.

    Google Scholar 

  • Weir, A. H. and Greene-Kelley, R. (1962) Beidellite. Am. Mineral. 47, 137–146.

    Google Scholar 

  • White, A., Glass, H. D. and Burke, D. A. (1977) Clay mineral profiles in the seatrock below the Summun no. 4 coal member of Illinois (abs.): 26th Annu. Clay Miner. Conf., Jamaica.

    Google Scholar 

  • Wiewiora, A. (1971) A mixed-layer kaolinite-smectite from Lower Silesia, Poland: Clays & Clay Minerals 19, 415–416.

    Article  Google Scholar 

  • Wiewiora, A. (1972) A mixed-layer kaolinite-smectite from Lower Silesia, Poland: Proc. Int. Clay Conf. 1, Madrid, 101–116.

    Google Scholar 

  • Wyart, J. and Sabatier, G. (1966) Synthèse hydrothermale de la corrensite: Bull. Groupe Fr. Argiles 18, 33–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberl, D. Reaction Series for Dioctahedral Smectites. Clays Clay Miner. 26, 327–340 (1978). https://doi.org/10.1346/CCMN.1978.0260503

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1978.0260503

Key Words

Navigation