Skip to main content
Log in

The Adsorption of N-Aliphatic Alcohols from Dilute Aqueous Solutions on RNH3-Montmorillonites. Part I. Distribution at Infinite Dilution

  • Published:
Clays and Clay Minerals

Abstract

The adsorption of butanol, hexanol, and octanol on alkylammonium clays of different chain length is studied. The adsorption at infinite dilution compares to the distribution of alcohol between alkane and water in bulk solution. The interlamellar phase of the montmorillonite acts as a solvent even more reactive than carbon tetrachloride. Hydrogen bonds probably occur between the OH group of the alcohol and the NH3+ group. The exchange of water by alcohol on the interlamellar alkylammonium ion is the major factor in the transfer process.

Резюме

Изучалась адсорбция бутанола,гексанола и октанола алкиламмониевы-ми глинами с различной длиной цепи. Адсорбция при бесконечном растворении сравнивается с распределением алкоголя между алкиленом и водой в объемном растворе. Межпластинчатая фаза монтмориллонита действует как растворитель, даже более химически активный,чем четыреххлористый углерод. Водородные связи,возможно,появляются между алкогольной группой ОН и группой NH3+. Замена воды алкоголем в межпластинчатом алкиламмониевом ионе является главным фактором в процессе переноса.Изучалась адсорбция бутанола,гексанола и октанола алкиламмониевы-ми глинами с различной длиной цепи. Адсорбция при бесконечном растворении сравнивается с распределением алкоголя между алкиленом и водой в объемном растворе. Межпластинчатая фаза монтмориллонита действует как растворитель, даже более химически активный,чем четыреххлористый углерод. Водородные связи,возможно,появляются между алкогольной группой ОН и группой NH3+. Замена воды алкоголем в межпластинчатом алкиламмониевом ионе является главным фактором в процессе переноса.

Kurzreferat

Die Adsorption von Butanol,Hexanol und Oktanol auf Alkylammo-niumtonerden mit verschiedenen Kettenlängen wurde untersucht. Die Adsorption bei endloser Verdünnung ist mit der Verteilung von Alkohol zwischen Alkan und Wasser in Massenlösungen vergleichbar. Die interlamelare Phase des Montmorilloniten benimmt sich wie ein Lösungsmittel, welches noch reaktiver als Tetrachlorkohlenstoff ist.Wasserstoffbrücken kommen wahrscheinlich zwischen den OH-Gruppen des Alkohols und der NH3+ Gruppen vor.Der Austausch von Wasser durch Alkohol auf den interlamellaren Alkylammoniumionen ist der Hauptfaktor in diesem Übergangsprozeß.

Résumé

L’adsorption de butanol,d’hexanol et d’octanol sur des argiles alkylammonium de longueur de chaines differente est étudiée. L’adsorption à dilution infinie peut être comparée à la distribution d’alcool entre l’alkane et l’eau dans la solution totale. La phase interlamellaire de la montmorillonite se comporte comme un solvant plus réactif encore que le tétrachlorure de carbone. Les liaisons d’hydrogène surviennent sans doute entre le groupe OH de l’alcool et le groupe NH3+. L’échange d’eau par l’alcool sur l’ion interlamellaire alkylammoniumest le facteur majeur dans le processus de transfert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón de la Cruz, F. and Castro Castro, H. (1969) El relieve inter-laminar y la sorcion de moleculas organicas: An. R. Soc. Esp. Fis. Quim. B65, 201–208.

    Google Scholar 

  • Aveyard, R. and Mitchell, R. W. (1968) Heat of solution in water of the liquid methylene group at 25°C: Trans. Faraday Soc. 64, 1757–1762.

    Article  Google Scholar 

  • Aveyard, R. and Mitchell, R. W. (1969) Distribution of n-alkanols between water and n-alkanes: Trans. Faraday Soc. 65, 2645–2653.

    Article  Google Scholar 

  • Barshad, I. (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances: Soil Sci. Soc. Am. Proc. 16, 176–182.

    Article  Google Scholar 

  • Barrer, R. M. and Millington, A. D. (1967) Sorption and intercrystalline porosity in organo-clays. J. Colloid Interface Sci. 25, 359–372.

    Article  Google Scholar 

  • Barrer, R. M., Papadopoulos, R. and Rees, L. V. C. (1967) Exchange of sodium in clinoptilolite by organic cations: J. Inorg. Nucl. Chem. 29, 2047–2063.

    Article  Google Scholar 

  • Bissada, K. K., Johns, W. D. and Cheng, F. S. (1967) Cation-dipole interactions in clay organic complexes: Clay Miner. 7, 155–166.

    Article  Google Scholar 

  • Boruff, C. S. (1959) Report on fusel oil: colorimetric method for quantitative determination of fusel oil in distilled beverages: J. Assoc. Off. Agric. Chem. 42, 331–336.

    Google Scholar 

  • Brindley, G. W. and Ray, S. (1964) Complexes of Ca-montmorillonite with primary monohydric alcohols (clay-organic studies—VIII): Am. Mineral. 49, 106–115.

    Google Scholar 

  • Brindley, G. W., Wiewiora, K. and Wiewiora, A. (1969) Intracrystalline swelling of montmorillonite in some water-organic mixtures (clay-organic studies—XVIII): Am. Mineral. 54, 1635–1644.

    Google Scholar 

  • Cremers, A. (1968) Ionic Movement in a Colloidal EnvironmentIntracrystalline swelling of montmorillonite in some water-organic mixtures (clay-organic studies—XVIII): N.V. De Vlaamse Drukkerij, Louvain.

    Google Scholar 

  • Dosch, W. (1967) Interlamellar reactions of tetracalciumaluminate hydrates with water and organic compounds: 15th Conf. Clays & Clay Minerals 27, 273–292.

    Article  Google Scholar 

  • German, W. and Harding, D. (1969) The adsorption of aliphatic alcohols by montmorillonite and kaolinite: Clay Miner. 8, 213–227.

    Article  Google Scholar 

  • Giles, C. H. (1970) Sorption and Transport Processes in Soils: S.C.I. Monograph No. 37, Soc. Chem. Ind., London.

    Google Scholar 

  • Granquist, W. T. and McAtee, J. L., Jr. (1963) The gelation of hydrocarbons by montmorillonite organic complexes: J. Colloid Sci. 18, 409–420.

    Article  Google Scholar 

  • Hanssens, I., Mullens, J., Deneuter, C. and Huyskens, P. (1968) Affinités comparées des monomolécules d’alcools aliphatiques pour l’eau, le cyclohexane et le tétrachlorure de carbone: Bull. Soc. Chim. Fr. 10, 3942–3945.

    Google Scholar 

  • Heydemann, A. and Brindley, G. W. (1968) Selective absorption of n-alkyl alcohol-bromide mixtures by montmorillonites (clay-organic studies—XIV): Am. Mineral. 53, 1232–1243.

    Google Scholar 

  • Hoffmann, R. W. and Brindley, G. W. (1960) Adsorption of nonionic aliphatic molecules from aqueous solutions on montmorillonite (clay-organic studies—II): Geochim. Cosmochim. Acta 20, 15–29.

    Article  Google Scholar 

  • Jordan, J. W. (1949) Organophilic bentonites. I. Swelling in organic liquids: J. Phys. Colloid Chem. 53, 294–306.

    Article  Google Scholar 

  • Kinoshita, K., Ishikawa, I. and Shinoda, K. (1958) Bull. Chem. Soc. Jpn. 31, 1081.

    Article  Google Scholar 

  • Kipling, J. J. (1965) Adsorption from Solutions of Non-electrolytes: A.P., London.

    Google Scholar 

  • Komarowsky, A. (1910) Furfurol und einige Aldehyde der aromatischen Reihe als Reagens auf Fuselöl bezw. Isoamylalkohol in rektifizierten Weingeist: Chem. Ztg. 34, 807–808.

    Google Scholar 

  • Laby, R. and Theng, B. K. G. (1964) Second Australian Clay Miner. Conf., Adelaide, 18.

    Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates: Proc. Int. Clay Conf. Tokyo 1, 61–80.

    Google Scholar 

  • Lagaly, G. and Weiss, A. (1970) Inhomogeneous charge distributions in mica-type layer silicates: Reunión Hispano-Belga de Minerales de la Arcilla, Madrid, pp. 179–187.

    Google Scholar 

  • Lamberts, L. and Zeegers-Huyskens, Th. (1963) Enthalpie de la liaison hydrogène des complexes amine-alcool: J. Chim. Phys. 60, 435–441.

    Article  Google Scholar 

  • McAtee, J. L., Jr. and Cheng, F. S. (1967) Differences in apparent interstratification of an organo-montmorillonite dispersed in various organic solvents. I. X-ray diffraction study: Am. Mineral. 52, 1386–1398.

    Google Scholar 

  • Mac Ewan, D. M. C. (1955) Interlamellar sorption by clay minerals: Clays Clay Technol. 169, 78–85.

    Google Scholar 

  • Neumann, B. S. and Sansom, K. G. (1970) Laponiteclay—a synthetic inorganic gelling agent for aqueous solutions of polar organic compounds: J. Soc. Cosmet. Chem. 21, 237–258.

    Google Scholar 

  • Shinoda, K., Nakagawa, T., Tamamushi, B. and Isemura, T. (1963) Colloidal Surfactants, some Physicochemical properties: A.P., New York.

    Google Scholar 

  • Somasundaran, P., Healy, T. W. and Fuerstenau, D. W. (1964) Surfactant adsorption at the solid-liquid interface—dependence of mechanism on chain length: J. Phys. Chem. 68, 3562–3566.

    Article  Google Scholar 

  • Stul, M. S. and Mortier, W. J. (1974) The heterogeneity of the charge density in montmorillonites: Clays & Clay Minerals 22, 391–396.

    Article  Google Scholar 

  • Weiss, A. (1963) Mica-type layer silicates with alkylammonium ions: Clays & Clay Minerals 10, 191–223.

    Article  Google Scholar 

  • Weiss, A. (1966) Modellversuche zur Hydrophobierung hydrophiler Grenzflächen an Schichtsilikaten: Kolloid Z. Z. Polym. 211, 94–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stul, M.S., Maes, A. & Uytterhoeven, J.B. The Adsorption of N-Aliphatic Alcohols from Dilute Aqueous Solutions on RNH3-Montmorillonites. Part I. Distribution at Infinite Dilution. Clays Clay Miner. 26, 309–317 (1978). https://doi.org/10.1346/CCMN.1978.0260501

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1978.0260501

Key Words

Navigation