Skip to main content
Log in

The Electrostatic Interlayer Forces of Layer Structure Minerals

  • Published:
Clays and Clay Minerals

Abstract

Using a simple ionic model, the energy necessary to expand a layer structure by a certain distance can be calculated. This has been done for a series of 15 structures including hydroxides, 2:1 and 1:1 structures of various types. Plots of energy versus separation distance show three major groups which have common bonding properties. For large separations, the group with the strongest interlayer bonds contains the brittle micas, the hydroxides, and the 1:1 structures. Intermediate bonding structures are the normal micas and the weakest bonds occur in the zero layer charge 2:1 structures. The relative energies needed for a given separation are not constant so that for small separations the zero layer charge structures such as talc and pyrophyllite are more strongly bonded than the normal micas. These groupings correlate very well with the expandability of the structures by water and other substances. It is proposed that this approach to the study of the layer structures will provide a simple theory explaining the expansion properties of layer silicates.

Резюме

Используя простую ионную модель,можно вычислить энергию,необходимую для расширения слоистой структуры на определенное расстояние. Это было проделано для серии из 15 структур,включая гидроокиси,структуры 2:1 и 1:1 различных типов. Графики зависимости энергии от расстояния разделения указывают на 3 главных группы,которые имеют характерные связующие свойства. При большом разделении группа с сильнейшими межслойными связями включает хрупкие слюды,гидроокиси и структуры 1:1. Структурами с промежуточными связями являются структуры нормальных слюд, и слабейшими связями обладают структуры 2:1 со слоями,имеющими нулевые заряды. Относительные величины энергии,необходимые для данного разделения,не являются постоянными.Так при небольших разделениях структуры со слоями,имеющими нулевые заряды,такие как тальк и пирофиллит,связаны сильнее,чем нормальные слюды. Это группирование очень хорошо коррелируется со способностью структур к расширению водой и другими жидкостями. Предполагается использовать этот метод для изучения слоистых структур,что обеспечит простую теорию для объяснения свойств расширения слоистых силикатов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassett, W. A. (1960) Role of hydroxyl orientation in mica alteration: Geol, Soc. Am. Bull. 71, 449–456.

    Article  Google Scholar 

  • Besson, G., Mifsud, A., Tchoubar, C. and Mering, J. (1974) Orderand disorder relations in the distribution of the substitutions in smectites, illites and vermiculites: Clays & Clay Minerals 22, 379–384.

    Article  Google Scholar 

  • Brindley, G. W. (1966) Discussions and recommendations concerning the nomenclature of clay minerals and related phyllosilicates: Clays & Clay Minerals 14, 27–34.

    Article  Google Scholar 

  • Brindley, G. W. (1970) Organic complexes of silicates: Reunion Hispano Belga de Minerales de la Arcilla, Madrid, 55–66.

    Google Scholar 

  • Brindley, G. W. and Ertem, G. (1971) Preparation and solvation properties of some variable charge montmorillonites: Clays and Clay Minerals 19, 399–404.

    Article  Google Scholar 

  • Giese, R. F. (1973) Interlayer bonding in kaolinite, dickite and nacrite: Clays & Clay Minerals 21, 145–149.

    Article  Google Scholar 

  • Giese, R. F. (1974) Surface energy calculations for muscovite: Nature Phys. Science 248, 580–581.

    Article  Google Scholar 

  • Giese, R. F. (1975a) Interlayer bonding in talc and pyrophyllite; Clays & Clay Minerals 23, 165–166.

    Article  Google Scholar 

  • Giese, R. F. (1975b) The effect of F/OH substitution on some layersilicate minerals: Z. Krist. 141, 138–144.

    Article  Google Scholar 

  • Giese, R. F. and Datta, P. (1973) Hydroxyl orientations in kaolinite, dickite and nacrite: Am. Mineral. 58, 471–479.

    Google Scholar 

  • Gilkes, R. J., Young, R. C. and Quirk, J. P. (1972) The oxidation of octahedral iron in biotite: Clays & Clay Minerals 20, 303–315.

    Article  Google Scholar 

  • Guggenheim, S. and Bailey, S. W. (1975) Refinement of the margarite structure in subgroup symmetry: Am. Mineral. 60, 1023–1029.

    Google Scholar 

  • Giiven, N. (1971) The crystal structure of 2M1 phengite and 2M1 muscovite: Z. Krist. 134, 196–212.

    Google Scholar 

  • Hofman, U., Weiss, A., Koch, G., Mehler, A. and Scholz, A. (1956) Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and of kaolinite: Clays and Clay Minerals, 4, 273–287.

    Article  Google Scholar 

  • Joswig, W. (1972) Neutronenbeugungsmessungen an einem 1M-Phlogopit: Neues Jahrb. Mineral. Monatsh. 1, 1–11.

    Google Scholar 

  • Kodama, H. (1975) Diffuse scattering by X-rays and electrons in mica and mica-like minerals: Clay Mineralogy 481, 7–13.

    Google Scholar 

  • Mackenzie, R. C. (1965) Nomenclature subcommittee of CIPEA: Clay Miner. Bull. 6, 123–126.

    Article  Google Scholar 

  • McCauley, J. W. and Newnham, R. E. (1973) Structure refinement of a barium mica: Z. Krist. 137, 360–367.

    Google Scholar 

  • Mering, J. and Pedro, G. (1969) Discussion à propos des critères de classification des phyllosilicates 2/1: Bull. Groupe Fr. Argiles 21, 130.

    Google Scholar 

  • Pedro, G. (1967) Commentaires sur la classification et la nomenclature des minéraux argileux: Bull. Groupe Fr. Argiles 19, 69–86.

    Article  Google Scholar 

  • Raynor, J. and Brown, G. (1973) The crystal structure of talc: Clays & Clay Minerals 21, 103–114.

    Article  Google Scholar 

  • Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3: Z. Krist. 139, 129–135.

    Article  Google Scholar 

  • Sartori, F., Franzini, M. and Merlino, S. (1973) Crystal structure of a 2M2 lepidolite: Acta Crystallogr., B29, 573–578.

    Article  Google Scholar 

  • Smith, D. L., Milford, M. H. and Zucherman, J. J. (1966) Mechanism for intercalation of kaolinite by alkali acetates: Science 153, 741–743.

    Article  Google Scholar 

  • Steadman, R. and Nuttall, P. M. (1963) Polymorphism in cronstedtite: Acta Crystallogr. 16, 1–8.

    Article  Google Scholar 

  • Suquet, H., Iiyama, J., Kodama, H. and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge: Clays & Clay Minerals 25, 231–242.

    Article  Google Scholar 

  • Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate: Am. Mineral. 46, 78–91.

    Google Scholar 

  • Wardle, R. and Brindley, G. W. (1972) The crystal structures of pyrophyllite, ITc, and of its dehydroxylate: Am. Mineral. 57, 732–750.

    Google Scholar 

  • Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit Einlagerungsverbindungen: Proc. Int. Clay Congr. Stockholm 1, 287–305.

    Google Scholar 

  • Zigan, F. and Rothbauer, R. (1967) Neutronenbeugungsmessungen am Brucit: Neues Jahrb. Mineral. Monatsh. 4/5, 137–143.

    Google Scholar 

  • Zhoukhlistov, A., Zvyagin, B. B., Soboleva, A. V. and Fedotov, A. F. (1973) The crystal structure of the dioctahedral mica 2M2 determined by high voltage electron diffraction: Clays A Clay Minerals 21, 465–470.

    Article  Google Scholar 

  • Zvyagin, B. B. (1967) Electron-diffraction of Clay Mineral Structures: Plenum Press, New York, 364 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giese, R.F. The Electrostatic Interlayer Forces of Layer Structure Minerals. Clays Clay Miner. 26, 51–57 (1978). https://doi.org/10.1346/CCMN.1978.0260106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1978.0260106

Key Words

Navigation