Skip to main content
Log in

Water Vapor Isotherms and Heat of Immersion of Na/Ca-Montmorillonite Systems—I: Homoionic Clay

  • Published:
Clays and Clay Minerals

Abstract

Adsorption isotherms for water vapor, c-spacing and heat of immersion in water of Na- and Ca-montmorillonite were measured at 25°C at various r.h. The amount of water adsorbed as a function of the r.h. increased gradually, whereas the c-spacing increased, and the heat of immersion (per mole of adsorbed water) decreased in steps. There was good agreement between the calorimetric data, the heat calculated from the isotherms by use of BET equation, and the calculations from the ion-dipole model. A model is presented to describe the hydration of sodium and calcium montmorillonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. M. and Sposito, G. (1964) Heats of immersion of Arizona bentonite in water: Soil Sci. 97, 214–219.

    Article  Google Scholar 

  • Arnett, E. M., Bentrude, W. G., Burke, J. J. and MacDug-gleby, P. (1965) Solvent effects in organic chemistry— V. Molecules, ions and transition states in aqueous ethanol: J. Am. Chem. Soc. 87, 1541–1553.

    Article  Google Scholar 

  • Barshad, I. (1955) Adsorption and swelling properties of clay-water systems: Bull. Calif. Dept. Nat. Resources, Div. Mines. 169, 90–77.

  • Bernal, J. D. and Fowler, R. H. (1933) A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions: J. Chem. Phys. 1, 515–548.

    Article  Google Scholar 

  • Blackmore, A. V. and Miller, R. D. (1961) Tactoid size and osmotic swelling in calcium montmorillonites: Soil Sci. Soc. Am. Proc. 25, 169–173.

    Article  Google Scholar 

  • Brown, D. S. and Miller, R. J. (1971) Bentonite instability and its influence on activation energy measurements: Soil Sci. Soc. Am. Proc. 35, 705–710.

    Article  Google Scholar 

  • Cross, P. C., Burnham, J. and Leighton, P. A. (1937) The Raman spectrum and the structure of water: J. Am. Chem. Soc. 59, 1134–1147.

    Article  Google Scholar 

  • Fripiat, J. T., Jelli, A., Poncelet, G. and Andre, J. (1965) Thermodynamic properties and adsorbed water molecules and electrical conduction in montmorillonite and silicates: J. Phys. Chem. 69, 2185–2197.

    Article  Google Scholar 

  • Hendricks, S. E., Nelson, R. A. and Alexander, L. T. (1940) Hydration mechanism of the clay mineral montmorillonite saturated with various cations: J. Am. Chem. Soc. 62, 1457–1464.

    Article  Google Scholar 

  • Hill, T. L. (1964) Theory of multimolecular adsorption from a mixture of gases: J. Chem. Phys. 14, 268–275.

    Article  Google Scholar 

  • Howel, B. F. and Licastro, P. H. (1961) Dielectric behavior of rocks and minerals: Am. Mineral. 46, 269–288.

    Google Scholar 

  • Kamil, J. and Shainberg, I. (1968) Hydrolysis of sodium montmorillonite in sodium chloride solutions: Soil Sci. 106, 193–199.

    Article  Google Scholar 

  • Kijne, J. (1969) On the interaction of water molecules and montmorillonite surfaces: Soil Sci. Soc. Am. Proc. 33, 539–542.

    Article  Google Scholar 

  • Marshall, C. E. (1936) Soil science and mineralogy: Soil Sci. Soc. Am. Proc. 1, 23–31.

    Article  Google Scholar 

  • Mering, J. (1946) On the hydration of montmorillonite: Trans. Faraday Soc. 42B, 205–219.

    Article  Google Scholar 

  • Mooney, R. W., Keenan, A. E. and Wood, L. A. (1952) Adsorption of water vapor by montmorillonite—II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction: J. Am. Chem. Soc. 74, 1371–1374.

    Article  Google Scholar 

  • Nagelschmidt, G. (1936) On the lattice shrinkage and structure of montmorillonite: Z. Krystallogr. 93A, 481–487.

    Google Scholar 

  • Norrish, K. and Quirk, J. P. (1954) Crystalline swelling of montmorillonite: Nature, Lond. 173, 255–256.

    Article  Google Scholar 

  • Quirk, J. P. (1955) Significance of surface area calculated from water vapor sorption isotherms by use of the BET equation: Soil Sci. 80, 423–430.

    Article  Google Scholar 

  • Robinson, R. A. and Stokes, R. H. (1959) Electrolyte Solutions: (2nd Edn) Butterworths, London.

    Google Scholar 

  • Sanger, R., Steiger, O. and Cachler, K. (1932) Temperatureffekt der Molekularpolarisation einiger gase und dampfe: Helv. Phys. Acta 5, 200.

  • Slabaugh, W. H. (1955) Heats of immersion of some clay systems in aqueous media: J. Phys. Chem. 59, 1022–1024.

    Article  Google Scholar 

  • Somsen, G., Coops, J. and Tolk, W. (1963) The use of potassium chloride as a standard substance in solution calorimetry: Rec. Trav. Chim. 82, 231–242.

    Article  Google Scholar 

  • Van Olphen, H. (1965) Thermodynamic of interlayer adsorption of water in clays: J. Colloid Sci. 20, 822–837.

    Article  Google Scholar 

  • Zettlemayer, A. C., Young, E. J. and Chessick, J. J. (1955) Studies of the surface chemistry of silicate minerals—III. Heat of immersion of bentonite in water: J. Phys. Chem. 59, 962–966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keren, R., Shainberg, I. Water Vapor Isotherms and Heat of Immersion of Na/Ca-Montmorillonite Systems—I: Homoionic Clay. Clays Clay Miner. 23, 193–200 (1975). https://doi.org/10.1346/CCMN.1975.0230305

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1975.0230305

Navigation