Skip to main content
Log in

Transformation of Sericite into an Interstratified Mineral

  • Published:
Clays and Clay Minerals

Abstract

Sericite was K-depleted with molten LiNO3. The sample was changed into an interstratified structure in the presence of a small amount of LiNO3 after prolonged treatment, and in the presence of a considerable amount of LiNO3 a similar structure was formed after about 3 hr of reaction. In the case of the presence of the proper amount of NaCl, a mixed-layer structure was easily obtained by treatment for a long period of time with a considerable amount of molten LiNO3.

The interstratified mineral had a basal spacing of 22 Å–23·3 Å which was expanded to 25 Å–27·6 Å by treatment with ethylene glycol.

Résumé

Une séricite a été épuisée en potassium par LiNO3 fondu. L’échantillon a été transformé en une structure interstratifiée en présence d’une petite quantité de LiNO3 après un traitement prolongé; en présence d’une quantité importante de LiNO3. une structure similaire s’est formée après environ trois heures de réaction. Dans le cas où une quantitè appropriée de NaCI est présente, une structure interstratifiée a été facilement obtenue par un traitement de longue durée avec une quantité importante de LiNO3 fondu.

Le minéral interstratifié a un espacement basal de 22–23,3 Å, qui gonfle à 25–27,6 Å après traitement à l’éthylène-glycol.

Kurzreferat

Mit Hilfe von geschmolzenem LiNO3 wurde einem Sericit Kalium entzogen. In Gegenwart einer geringen Menge von LiNO3 wurde die Probe nach längerer Behandlung in ein zwischengeschichtetes Gefüge verwandelt, und in Gegenwart einer griösseren Menge von LiNO3 wurde ein ähnliches Gefüge bereits nach drei Stunden Reaktionszeit gebildet. Bei Anwesenheit der entsprechenden Menge von NaCl konnte eine Gemischtschichtstruktur leicht erhalten werden durch Behandlung über eine lämgere Zeitspanne mit einer beträchtlichen Menge von geschmolzenem LiNO3.

Das zwischengeschichtete Mineral hatte einen basalen Abstand von 22 Å–23,3 Å der durch Behandlung mit Äthylenglykol auf 25 Å–27,6 Å erweitert wurde.

Резюме

Серицит был подвергнут обработке расплавленным LiNO3 с целью удаления К. Образец претерпел превращение в смешаннослойную структуру в присутствии небольшого количества LiNO3 при продолжительной обработке или же в присутствии достаточно большого количества LiО3 в течение трех часов. В присутствии достаточного количества NаСl смешаннослойная структура легко получалась при обработке в течение длительного периода времени большим количеством расплавленного LiО3.

Смешаннослойный минерал характеризуется базальным межплоскостным расстоянием 22–23,3 0А, которое увеличивается до 25–27,6 0А при обработке этилен-гликолем.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves and water content: Am. Mineralogist 33, 655–678.

    Google Scholar 

  • Barshad, I. (1954) Cation exchange in micaceous minerals: Replaceability of ammonium and potassium from vermiculite, biotite and montmorillonite: Soil. Sci. 78, 57–76.

    Article  Google Scholar 

  • Brindley, G. W. (1956) Allevardite: Am. Mineralogist 41, 91–103.

    Google Scholar 

  • De Mumbrum, L. E. (1959) Exchangeable potassium levels in vermiculite and K-depleted micas, and implications relative to potassium levels in soils: Soil Sci. Soc. Am. Proc. 23, 192–194.

    Article  Google Scholar 

  • De Mumbrum, L. E. (1963) Conversion of mica to vermiculite by potassium removal: Soil Sci. 96, 275–276.

    Article  Google Scholar 

  • Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals: Mineral. Mag. 30, 604–615.

    Google Scholar 

  • Hanway, J. J. (1956) Fixation and release of ammonium in soils and certain minerals: Iowa State Coll. J. Sci 30, 374–375.

    Google Scholar 

  • Jackson, M. L. and Sherman, G. D, (1953) Chemical weathering in soils: Advanc. Agron. 5, 219–318.

    Article  Google Scholar 

  • Mortland, M. M. (1958) Kinetics of potassium release from biotite: Soil Sci. Soc. Am. Proc. 22, 503–508.

    Article  Google Scholar 

  • Oinuma, K. and Hayashi, H. (1965) Infrared study of mixed-layer clay minerals: Am. Mineralogist 50, 1213–1227.

    Google Scholar 

  • Rausell-Colom, J. A., Sweatman, C. B., Wells, C. B. and Norrish, K. (1965) In Experimental Pedology (Edited by E. G. Holdsworth and D. V. Crawford), pp. 40–72 Buttersworths, London.

  • Rich, C. I. and Cook, M. G. (1963) Formation of dioctahedral vermiculite in Virginia soils: Clays and Clay Minerals 10, 96–106.

    Article  Google Scholar 

  • Scott, A. D. (1968) Effect of particle size on interlayer potassium exchange in micas: Trans. 9th Cong. Int. Soil Sci. Soc. 2, 649–660.

    Google Scholar 

  • Scott, A. D., Hunziker, R. R. and Hanway, J. J. (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — I. Preliminary experiments: Soil Sci. Soc. Am. Proc. 24, 191–194.

    Article  Google Scholar 

  • Scott, A. D. and Reed, M. G. (1962a) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — II. Biotite: Soil Sci. Soc.Am. Proc. 26, 41–45.

    Article  Google Scholar 

  • Scott, A. D. and Reed, M. G. (1962b) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — III. Illite: Soil Sci. Soc.Am. Proc. 26, 45–48.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961a) A new approach to assignment of infrared absorption bands in layer-structure silicates: Z. Krist. 115, 200–214.

    Article  Google Scholar 

  • Stubičan, V. and Roy, R. (1962b) Isomorphous substitution and infrared spectra of the layer lattice silicates: Am. Mineralogist 46, 32–51.

    Google Scholar 

  • Sudo, T., Hayashi, H. and Shimoda, S. (1962) Mineralogi-cal problems of intermediate clay minerals: Clays and Clay Minerals 9, 378–392.

    Article  Google Scholar 

  • Tettenhorst, R. and Johns, W. D. (1963) Interstratification in montmorillonite: Clays and Clay Minerals 13, 85–93.

    Article  Google Scholar 

  • Tomita, K. and Sudo, T. (1968a) Conversion of mica into an interstratified mineral: Rept. Faculty of Sci., Kagoshima Univ. No. 1, 89–119.

    Google Scholar 

  • Tomita, K. and Sudo, T. (1968b) Interstratified structure formed from a pre-heated mica by acid treatments: Nature, Lond. 217, 2043–1044.

    Article  Google Scholar 

  • White, J. L. (1958) Layer charge and interlamellar lattice silicates: Clays and Clay Minerals 4, 133–146.

    Article  Google Scholar 

  • White, J. L. (1958) Layer charge and interlamellar expansion in a muscovite: Clays and Clay Minerals 5, 289–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, K., Sudo, T. Transformation of Sericite into an Interstratified Mineral. Clays Clay Miner. 19, 263–270 (1971). https://doi.org/10.1346/CCMN.1971.0190407

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1971.0190407

Navigation