Skip to main content
Log in

Low Frequency Dielectric Dispersion of Clay-Water-Electrolyte Systems

  • Published:
Clays and Clay Minerals

Abstract

—The dielectric properties of saturated kaolinite clay-water-electrolyte systems were determined over the frequency range of 30–105c/s. Very large dielectric constants are observed at low frequencies. Since the experimental data approach constant values at each end of this frequency spectrum, they can be described by a fairly well defined spectrum of relaxation times. The particle size and orientation, the type and amount of electrolyte, and temperature affect the low frequency dielectric increment and the average relaxtion time. Several physical processes, such as relaxtion due to dipolar rotational polarization, interfacial polarization, free space charge and bound ion polarization, are examined in an attempt to explain the observed data. It is concluded that there exists at present no theory to explain all the data, but the bound ion polarization mechanism appears to explain some of the results.

Résumé

—Les propriétés diélectriques de systèmes d’électrolyte d’eau argileuse à kaolinite saturée sont déterminées sur une gamme de fréquence de 30–105c/s. On observe des constantes diélectriques très élevées à basse fréquence. Comme les données expérimentales approchent des valeurs constantes à chaque extrémité du spectre de fréquence, on peut les décrire avec un spectre relativement bien défini de temps de relâchement. La taille et l’orientation des particules, le type et le quantité d’électrolyte, et la température ont une influence sur l’accroissement diélectrique à basse fréquence et le temps de relâchement moyen. Plusieurs actions physiques, tels que le relâchement dû à la polarisation par rotation dipolaire, la polarisation interfaciale, par charge d’espaces libres ou par ions liés, font l’objet d’un examen qui tente d’expliquer les données observées. On arrive à la conclusion qu’il n’y a à présent aucune théorie pour expliquer toutes ces données, mais le mécanisme de polarisation par ions liés semble fournir une explication à certains des résultats.

Kurzreferat

Die dielektrischen Eigenschaften gesättigter kaolinitischer Ton-Wasser Elektrolytsysteme wurden im Frequenzbereich von 30 bis 105 Hz gemessen. Bei niedrigen Frequenzen wurden sehr hohe Dielektrizitätskonstanten beobachtet. Da sich die Versuchswerte an jedem Ende dieses Frequenzspektrums konstanten Werten nähern, ist en möglich dieselben durch ein recht gut um-rissenes Spektrum von Relaxationszeiten zu beschreiben. Die dielektrische Zunahme bei niedrigen Frequenzen und die durchschnittliche Relaxationszeit werden durch Teilchengrösse und Orientierung, die Art und die Menge des Elektrolyten, sowie durch die Temperatur beeinflusst. In einem Versuch die beobachteten Daten zu erklären, werden verschiedene physikalische Vorgänge, wie Relaxation infolge dipolarer Rotationspolarisation. Grenz-flächenpolarisation. freie Raumladung und gebundene lonenpolarisation untersucht. Es wird festgestellt, dass im Augenblick keine Theorie existiert, die alle Daten erklärt, aber dass einige der Resultate durch den Mechanismus der gebundenen Ionenpolarisation erklärt werden können.

Резюме

Диэлектрические свойства систем насыщенные Э1ек1ррашмац-каошнцжоц-во(гоц определялись в частотном диапазоне от 30 до 105 гц. На низких частотах наблюдаются очень большие диэлектрические постоянные. Ввиду того, что экспериментальные данные достигают постоянных значений при каждом конце этого спектра частот, описываются они сравнительно ясно определенным спектром времени релаксации. Размер частиц и ориентация, тип и количество электролита, а также температура влияют на низкочастотное диэлектрическое приращение и на среднее время релаксации. Ряд физических процессов, как например релаксация, вызванная биполярной вращательной поляризацией, межповерхностная поляризация, пространственный заряд и поляризация связанных ионов, исследуются с целью объяснения наблюдаемых данных. Вывод доклада, что в данное время нет теории для объяснения всех данных, но механизм поляризации связанных ионов повидимому объясняет некоторые результаты.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arulanandan, K. (1966) Electrical response characteristics of clays and their relationships to soil structures: Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Cole, K. S., and Cole, R. H. (1941) Dispersion and absorption in dielectrics 1. Alternating current characteristics: J. Chem. Phys. 9, 341–351.

    Article  Google Scholar 

  • Debye, P. (1929) Polar Molecules: New York.

    Google Scholar 

  • Fricke, H., and Curtis, H. J. (1937) The dielectric properties of water-dielectric interphases: J. Phys Chem. 41, 729.

    Article  Google Scholar 

  • Gillespie, R. J., and Cole, R. H. (1956) Trans. Faraday Soc. 52, 1325.

    Article  Google Scholar 

  • Goldsmith, B. J., and Muir, Jr. (1960) Surface ion effects in the dielectric properties of adsorbed water films: Trans. Faraday Soc. 56, 1656–1661.

    Article  Google Scholar 

  • Helfferich, F. (1962) Ion exchange: McGraw-Hill, New York.

    Google Scholar 

  • Henkel, J. H., and Van Nostrand, R. G. (1957) Experiments in induced polarization: Mining Engineering.

    Google Scholar 

  • Lane, A., and Saxton, J. A. (1952) Dielectric properties of water: Proc. Roy. Soc, A213, 400.

    Google Scholar 

  • LePage, W. R. (1952) Analysis of alternating current circuits: McGraw-Hill, New York.

    Google Scholar 

  • Madden, T. R., and Marshall, D.J. (1958, 1959) Induced polarization study of the causes and magnitudes in geological materials; Final Reports for Atomic Energy Commission, Unpublished.

    Google Scholar 

  • Mandel, M. (1955) Bull. Soc. Chim. Belges 64, 442.

    Article  Google Scholar 

  • Mandel, M., and Jenard, A. (1963) Dielectric behaviour of aequous polyelectrolyte solutions: Trans. Faraday Soc. 59, 2158.

    Article  Google Scholar 

  • Maxwell, J. C. (1873) A treatise on electricity and magnetism: Oxford University Press, Article 314.

    Google Scholar 

  • Mitchell, J. K., and Arulanandan, K. (1967) Electrical dispersion in relation to soil structure: Soil Mechanics and Bituminous Materials, Research Lab. Report, University of California, Berkeley.

    Google Scholar 

  • O’konski, C. T. (1960) Electric properties of macromolecules, V. theory of ionic polarization polyelectrolytes: J. Phys. Chem. 64, 605.

    Article  Google Scholar 

  • O’konski, C. T., and Shira, M. (1966) Chemical physics of ionic solutions. (Edited by B. E. Conway and R. G. Barrada), Chap. 18. Wiley, New York.

  • Pauly, H., and Schwan, H. P. Z. (1959) Naturforsch 146, 125.

    Article  Google Scholar 

  • Sachs, S. B., and Spiegler, K. S. (1964) Radiofrequency measurements of porous conductive plugs, Ion-exchange resin-solution systems: J. Phys. Chem. 68, 1214.

    Article  Google Scholar 

  • Schwan, H. P. (1957) Electrical properties of tissues and cell suspensions: Biol. Med. Phys. 5.

  • Schwan, H. P., et al. (1962) On the low frequency dielectric dispersion of colloidal particles in electrolyte solution: J. Phys Chem. 66, 2626.

    Article  Google Scholar 

  • Schwarz, G. (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution: J. Phys Chem. 66, 2626.

    Article  Google Scholar 

  • Smith-Rose, R. L. (1923) Proc. Roy. Soc. (London) A140, 359.

    Google Scholar 

  • Vacquier, et al. (1957) Prospecting for ground water by induced electrical polarization: Geophysics 22, 660.

    Article  Google Scholar 

  • Wagner, K. W. (1994) Arch. Elektrotech. 2, 371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arulanandan, K., Mitchell, J.K. Low Frequency Dielectric Dispersion of Clay-Water-Electrolyte Systems. Clays Clay Miner. 16, 337–351 (1968). https://doi.org/10.1346/CCMN.1968.0160503

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1968.0160503

Navigation