Skip to main content
Log in

Relations of Composition to Structure of Dioctahedral 2:1 Clay Minerals

  • Published:
Clays and Clay Minerals

Abstract

A ternary plot of the tetrahedral R3+ and octahedral R3+ populations for the dioctahedral 2:1 clay minerals shows a broad range of compositional variation within each of the major clay minerals. The clay minerals can be subdivided on the basis of total charge, location of the charge, and the relative amounts of Al and Fe3+ in the octahedral sheet. The division is natural and is controlled by the misfit between the tetrahedral and octahedral sheets and the need for tetrahedral rotation. The compositions of the tetrahedral and octahedral sheets are interdependent. Whereas muscovite has a lower limit of 1·7 Al octahedral occupancy, illite and montmorillonite have a lower limit of 1·3 Al; lower Al values result in the formation of a chain structure.

Résumé

Un relevé ternaire des populations tétraédriques R3+ et octaédrique R3+ pour les minéraux argileux dioctaédriques 2:1, montre une gamme étundue de variations dans la composition de chacun des principaux minéraux argileux. Les minéraux argileux peuvent se subdiviser sur la base d’une charge totale, de la localisation de la charge et des quantités relatives de Al et de Fe3+ dans la feuillet octaédrique. La division est naturelle et elle est contrôlée par l’échec entre les feuillets tétraédriques et octaédriques et le besoin pour la rotation tétraédrique. Les compositions des feuillets tétraédriques et octaédriques sont interdépendantes. Cependant, le muscovite a une limite plus faible de contenance de 1·7 A1 octaédrique, l’illite et le montmorillonite ont une limite plus basse de 1·3 Al; des valeurs d’Al plus faibles résultent de la formation d’une structure en chaîne.

Kurzreferat

Ein Dreistoffidagramm der tetrahedralen R3+ und oktahedralen R3+ Bestände für die dioktahedralen 2:1 Tonminerale zeigte einen weiten Bereich von Unterschieden in der Zusammensetzung innerhalb jedes der wichtigeren Tonminerale. Eine Unterteilung der Tonminerale ist möglich auf Grund der Gesamtladung, Lage der Ladung und der relativen Menge von Al und Fe3+ in der oktahedralen Schicht. Die Teilung ist eine natürliche Erscheinung und wird durch den Mangel an Anpassung zwischen tetrahedralen und oktahedralen Schichte, sowie durch den Bedarf für tetrahedrale Drehung bedingt. Die Zusammensetzungen der tetrahedralen und oktahedralen Schichten sind voneinander abhängig. Während Muscovit eine untere Grenze von 1,7 Al oktahedraler Besetzung hat, weisen Illit und Montmorillonit eine untere Grenze von 1,3 Al auf; niedrigere Al Werte geben Anlass zur Bildung von Kettenformationen.

Резюме

Третичная кривая четырехгранных К3+ и восьмигранных К3+ плотностей из-дивосьмигранных 2:1 глинистых иинералов указывает на крупное количество изменений по составу в каждом из главных глинистых минералов. Глинистые минералы подразделяют на основании общей нагрузки, местоположения нагрузки и относительного количества А1 и Ре3+ в восьмигранном слое. Раздел естественный и регулируется отсутствием несоответствия между четырехгранными и восьмигранными слоями, а также необходимостью четырехгранного чередования. Составы четырехгранных и восьмигранных слоев взаимосвязанные. В то время, как мусковит имеет более низкий уровень восьмигранной занятости 1,7 Аl, иллит и монтмориллонит имеют более низкий уровень 1,3 А1; более низкие значения А1 влекут за собой возникновение цепной структуры.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley, W. F. (1955) Structural irregularities in hydrous magnesium silicates: Clays and Clay Min., Natl. Acad. Sci., Natl. Res. Council Publ. 3, 94–102.

    Article  Google Scholar 

  • Burst, J. F. (1958) Mineral heterogeneity in glauconite pellets, Am. Mineralogist 43, 481–497.

    Google Scholar 

  • Caillère, S., and Hénin, S. (1961) Palygorskite, in The X-ray Identification and Crystal Structures of Clay Minerals; Min. Soc. of London, (Edited by G. Brown) Chap. 9, pp. 343–353.

    Google Scholar 

  • Foster, M. D. (1951) The importance of exchangeable magnesium and cation exchange capacity in the study of montmorillonite clays: Am. Mineralogist 36, 717–730.

    Google Scholar 

  • Foster, M. D. (1954) The relation between illite, beidellite, and montmorillonite: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 2, 386–397.

    Google Scholar 

  • Grim, R. E., and Kulbicki, G. (1961) Montmorillonite: high temperature reactions and classification: Am. Mineralogist 46, 1329–1369.

    Google Scholar 

  • Hallimond, A. F. (1922) On glauconite from the greensand near Lewes Sussex; The constitution of glauconite, Mineralogist Mag. 19, 330–333.

    Google Scholar 

  • Hendricks, S. B., and Ross, C. S. (1941) Chemical composition and genesis of glauconite and celadonite: Am. Mineralogist 26, 683–708.

    Google Scholar 

  • Kerr, P. F., and others (1950) Analytical data on reference clay materials: Prelim. Rep. No. 7, Reference Clay Min., Am. Petroleum Inst., Res. Prop. 49, Columbia Univ., New York.

    Google Scholar 

  • Osthaus, B. B. (1955) Interpretation of chemical analyses of montmorillonites: Clays and Clay Techn. 1 95–100 Div. of Mines, California.

    Article  Google Scholar 

  • Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer-lattice silicates II. Regression relations: Am. Mineralogist 47, 617–636.

    Google Scholar 

  • Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates IV. Interatomic forces: Am. Mineralogist 48, 76–99.

    Google Scholar 

  • Radoslovich, E. W., and Norrish, K., (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations: Am. Mineralogist 47, 599–616.

    Google Scholar 

  • Ross, C. S., and Hendricks, S. B. (1945) Minerals of the montmorillonite group: U.S.G.S. Bull., 205 B.

    Google Scholar 

  • Sawhney, B. L., and Jackson, M. L. (1958) Soil montmorillonite formulas: Soil Sci. Soc. Am. Proc. 22, 115–118.

    Article  Google Scholar 

  • Tyler, S. A., and Bailey, S. W. (1961) Secondary glau-conite in the Biwabic Iron-Formation of Minnesota: Econ. Geol. 56, 1030–1044.

    Article  Google Scholar 

  • Warshaw, C. M. (1957) The mineralogy of glauconite: Ph.D. Thesis, Pennsylvania State University.

    Google Scholar 

  • Wise, W. S., and Eugster, H. P. (1964) Celadonite: synthesis, thermal stability and occurrence: Am. Mineralogist 49, 1031–1083.

    Google Scholar 

  • Yoder, H. S., and Eugster, H. P. (1955) Synthetic and natural muscovites: Geochim. Cosmochim. Acta 8, 225–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, C.E. Relations of Composition to Structure of Dioctahedral 2:1 Clay Minerals. Clays Clay Miner. 16, 51–61 (1968). https://doi.org/10.1346/CCMN.1968.0160107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1968.0160107

Navigation