Skip to main content
Log in

New data on Sepiolite and Attapulgite

  • Published:
Clays and Clay Minerals

Abstract

Hydrothermal studies have failed to yield synthetic attapulgite or sepiolites in the system MgO-Al2O3-SiO2-H2O. However, the natural minerals can be decomposed to yield mont-morillonoids by mild hydrothermal treatment as low as 200°C and probably as low as 100°C. These data indicate that they are metastable and probably could not have formed at these temperatures.

Dry dehydration at 400° and 750°C gave no evidence for the presence of “zeolitic water” in these minerals and failed to establish the existence of “anhydride” phases. The field study of relationships in one sepiolite locality suggests the importance of structural control in the formation of these minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen, N. L., and Tuttle, O. F., 1949, The system MgO-SiO2-H2O: Geol. Soc. Amer., Bull. 60, p. 439–460.

    Article  Google Scholar 

  • Bradley, W. F., 1940, The structural scheme of attapulgite: Amer. Min., v. 25, p. 405–410.

    Google Scholar 

  • Brauner, K., and Preisinger, A., 1956, The structure and origin of sepiolite: Tschermaks mineralog. u. petrog. Mitte. (Vienna), v. 6, p. 120–140.

    Article  Google Scholar 

  • Caillère, S., 1936, Some asbestiform and papyraceous silicates not belonging to the anti-gorite group: Bull. Soc. Franc. Min., v. 59, p. 352–374.

    Google Scholar 

  • Caillère, S., 1951, Sepiolite: in X-ray identification and crystal structures of clay minerals, Mineralogical Society, London, p. 224–233.

    Google Scholar 

  • Caillère, S., 1951a, Palygorskite-attapulgite: in X-ray identification and crystal structures of clay minerals, Mineralogical Society, London, p. 234–243.

    Google Scholar 

  • Caillère, S., and Hénin, S., 1949, Occurrence of sepiolite in the Lizard serpentine: Nature, v. 163, p. 962.

    Article  Google Scholar 

  • Gerasimov, N. P., Grushko, T. E., and Chirvinsky, P. N., 1949, Mineral palygorskitovoi gruppy iz solikamskogo gorizonta kungurskogo yarusa v zapadnom Predurale: Vsesoyuz. Miner. Obshch., Zap., v. 78, no. 2, p. 95–100.

    Google Scholar 

  • Heystek, H., and Schmidt, E. R., 1953, The mineralogy of the attapulgite-montmorillonite deposit in the Springbok Flats, Transvaal: Geol. Soc. S. Africa, Trans., v. 56, p. 99–119.

    Google Scholar 

  • Kauffman, A. J. Jr., 1943, Fibrous sepiolite from Yavapai County, Arizona: Amer. Min., v. 28, p. 512–520.

    Google Scholar 

  • Kerr, P. F., 1937, Attapulgus clay: Amer. Min., v. 22, p. 534–550.

    Google Scholar 

  • Kerr, P. F., and others, 1949, Analytical data on reference clay minerals: in Reference clay minerals, A. P. I. Res. Project 49, Prelim. Rept. 7, 161 p.

    Google Scholar 

  • LaCroix, A., 1940, Les transformations minéralogiques secondaires observées dans les gisements de phlogopite de l’extreme-sud de Madagascar: Compt. Rend. Acad. Sci., v. 210, p. 353–357.

    Google Scholar 

  • Lapparent, Jacques, de, 1936, Les milieux générateurs de la montmorillonite et de la sépiolite: Compt. Rend. Acad. Sci. Paris, v. 203, p. 553–555.

    Google Scholar 

  • Longchambon, Henri, 1935, Sur les constituants minéralogiques essentiels des argiles, en particulier des terres à foulon: Compt. Rend. Acad. Sci. Paris, v. 201, p. 483–486.

    Google Scholar 

  • Longchambon, Henri, 1937, Caractéristique de la sépiolite d’Ampandandrava et la formule des sépiolites: Bull. Soc. Franc. Min., v. 60, p. 232–276.

    Google Scholar 

  • Migeon, G., 1936, Sepiolites: Bull. Soc. Franc. Min., v. 59, p. 6–134.

    Google Scholar 

  • Mumpton, F. A., and Roy, Rustum, 1956, The influence of ionic substitution on the hydrothermal stability of montmorillonoids (ext. abs.): in Clays and clay minerals, Nat. Acad. Sci.—Nat. Res. Council pub. 456, p. 337–339.

    Google Scholar 

  • Nagy, Bartholomew, and Bradley, W. F., 1955, The structural scheme of sepiolite: Amer. Min., v. 40, p. 885–892.

    Google Scholar 

  • Roy, D. M., and Roy, Rustum, 1955, Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O: Amer. Min., v. 40, p. 147–178.

    Google Scholar 

  • Roy, D. M., Roy, Rustum, and Osborn, E. F., 1953, The system MgO-?l2O3-?2? and influence of carbonate and nitrate ions on the phase equilibria: Amer. J. Sci., v. 251, p. 337–361.

    Article  Google Scholar 

  • Roy, Rustum, and Osborn, E. F., 1952, Some simple aids in the hydrothermal investigation of mineral systems: Econ. Geol., v. 47, p. 717–721.

    Article  Google Scholar 

  • Serdyuchenko, D. P., 1949, Sepiolite from northern Caucasus: Doklady Acad. Nauk S.S.S.R., v. 69, p. 577–580.

    Google Scholar 

  • Shannon, E. V., 1929, Tschermigite, ammoniojarosite, epsomite, celestite, and paligorskite from southern Utah: U.S. Nat. Mus. Proc., v. 74, art. 13, 12 p.

    Article  Google Scholar 

  • Yoder, H. S. Jr., 1952, The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies: Amer. J. Sci., Bowen vol., p. 569–627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution no. 56-44, College of Mineral Industries, The Pennsylvania State University, University Park, Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumpton, F.A., Roy, R. New data on Sepiolite and Attapulgite. Clays Clay Miner. 5, 136–143 (1956). https://doi.org/10.1346/CCMN.1956.0050111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1956.0050111

Navigation