Skip to main content
Log in

Preparation and Characterization of Eu-Magadiite Intercalation Compounds

  • Published:
Clays and Clay Minerals

Abstract

The intercalation of europium ions (Eu3+) into the interlayer space of a layered silicate, magadiite, was conducted by ion-exchange reactions between magadiite and europium(III) chloride. X-ray diffraction and elemental analysis results indicated that Eu3+ cations were intercalated into the interlayer space of magadiite. The ion exchange between Eu3+ and Na+ occurred preferentially so that the adsorbed Eu3+ amounts were controlled quantitatively. Thermal transformation of the original layered structure was suppressed by the intercalation of Eu3+. The resulting intercalation compounds exhibited photoluminescence arising from the intercalated Eu3+. The luminescence intensity varied in accordance with the amount of Eu3+ absorbed, suggesting that the self-quenching occurred at higher loading levels. The luminescence intensity was also changed by the heat treatment, corresponding to the change in the surroundings of the Eu3+ adsorbed, induced by the removal of the adsorbed water molecules and the hydroxyl groups of the silicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, T., Tagata, T., Adachi, G. and Shiokawa, J. (1979) Photoluminescence during the catalysis of water decomposition on an activated europium(III)-Y zeolite. Journal of the Chemical Society, Chemical Communications, 453–454.

  • Bartlett, J.R., Cooney, R.P. and Kydo, R.A. (1988) Europium-exchanged synthetic faujasite zeolites: A luminescence spectroscopic study. Journal of Catalysis, 114, 58–70.

    Article  Google Scholar 

  • Bergaya, F. and Van Damme, H. (1983) Luminescence of Eu3+ and Tb3+ ions adsorbed on hydrated layer-lattice silicate surfaces. Journal of the Chemical Society, Faraday Transactions 2, 79, 505–518.

    Article  Google Scholar 

  • Bredol, M., Kynast, U. and Ronda, C. (1991) Designing luminescent materials. Advanced Materials, 3, 361–367.

    Article  Google Scholar 

  • Constantino, V.R.L., Bizeto, M.A. and Brito, H.F. (1998) Photoluminescence study of layered niobates intercalated with Eu3+ ions. Journal of Alloys and Compounds, 278, 142–148.

    Article  Google Scholar 

  • Dailey, J.S. and Pinnavaia, T.J. (1992) Silica pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials, 4, 855–863.

    Article  Google Scholar 

  • Eugster, H.P. (1967) Hydrous sodium silicates from Lake Magadii, Kenya: Precursors of bedded chert. Science, 157, 1177–1180.

    Article  Google Scholar 

  • Honma, T., Toda, K., Ye, Z-G. and Sato, M. (1998) Concentration quenching of the Eu3+-activated luminescence in some layered perovskites with two-dimensional arrangement. Journal of Physics and Chemistry of Solids, 59, 1187–1193.

    Article  Google Scholar 

  • Isoda, K., Kuroda, K. and Ogawa, M. (2000) Grafting of γ-methacryloxypropylsilyl groups in the interlayer space of layered polysilicate magadiite and the copolymerized products with methylmethacrylate. Chemistry of Materials, 12, 1702–1707.

    Article  Google Scholar 

  • Kim, C.S., Yates, D.M. and Heaney, P.J. (1997) The layered sodium silicate magadiite: An analog to smectite for benzene sorption from water. Clays and Clay Minerals, 45, 881–885.

    Article  Google Scholar 

  • Kudo, A. and Sakata, T. (1995) Luminescent properties of nondoped and rare earth metal ions-doped K2La2Ti3O10 with layered perovskite structures: importance of the hole trap process. Journal of Physical Chemistry, 99, 15963–15967.

    Article  Google Scholar 

  • Kudo, A. (1997) Luminescent properties of nondoped and rare earth metal ions-doped KLaNb2O7 with layered perovskite structures. Chemistry of Materials, 9, 664–669.

    Article  Google Scholar 

  • Lagaly, G. (1979) Crystalline silicic acids and their interface reactions. Advances in Colloid and Interface Science, 11, 105–148.

    Article  Google Scholar 

  • Lagaly, G., Beneke, K. and Weiss, A. (1975a) Magadiite and H-magadiite: i. Sodium magadiite and some of its derivatives. American Mineralogist, 60, 642–649.

    Google Scholar 

  • Lagaly, G., Beneke, K. and Weiss, A. (1975b) Magadiite and H-magadiite: ii. H magadiite and its intercalation compounds. American Mineralogist, 60, 650–658.

    Google Scholar 

  • Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W. and Rubin, M.K. (1991) Preparation of molecular sieves from dense, layered metal oxides. Journal of the American Chemical Society, 113, 3189–3190.

    Article  Google Scholar 

  • Miller, S.E., Heath, G.R. and Gonzalez, R.D. (1982) Effects of temperature on the sorption of lanthanides by montmorillonite. Clays and Clay Minerals, 30, 111.

    Article  Google Scholar 

  • Muraishi, H. (1999) Effects of the exchangeable alkali metal ions on the thermal behavior of magadiite and kenyaite. Nendo Kagaku, 38, 188–196.

    Google Scholar 

  • Nogami, M. and Abe, Y. (1997) High temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process. Applied Physics Letters, 71, 3465–3467.

    Article  Google Scholar 

  • Ogawa, M. and Kuroda, K. (1995) Photofunctions of intercalation compounds. Chemical Reviews, 95, 399–438.

    Article  Google Scholar 

  • Ogawa, M. and Maeda, N. (1998) Intercalation of tris(bipyridine)ruthenium(II) into magadiite. Clay Minerals, 33, 643–650.

    Article  Google Scholar 

  • Ogawa, M. and Takizawa, Y. (1999) Intercalation of tris(2,2′-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry, B, 103, 5005–5009.

    Article  Google Scholar 

  • Ogawa, M., Okutomo, S. and Kuroda, K. (1998a) Control of interlayer microstructures of a layered silicate by surface modification with organochlorosilanes. Journal of the American Chemical Society, 120, 7361–7362.

    Article  Google Scholar 

  • Ogawa, M., Miyoshi, M. and Kuroda, K. (1998b) Perfluoroalkylsilylation of a layered silicate, magadiite. Chemistry of Materials, 10, 3787–3791.

    Article  Google Scholar 

  • Ogawa, M., Ishii, T., Miyamoto, N. and Kuroda, K. (2001a) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound. Advanced Materials, 13, 1107–1109.

    Article  Google Scholar 

  • Ogawa, M., Yamamoto, M. and Kuroda, K. (2001b) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Minerals, 36, 263–267.

    Article  Google Scholar 

  • Okutomo, S., Kuroda, K. and Ogawa, M. (1999) Preparation of dimethylalkylsilylated-magadiites. Applied Clay Science, 15, 253–264.

    Article  Google Scholar 

  • Rojo, J.M., Ruiz-Hitzky, E. and Sanz, J. (1988) Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry, 27, 2785–2790.

    Article  Google Scholar 

  • Ruiz-Hitzky, E. and Rojo, M. (1980) Intracrystalline grafting on layer silicic acid. Nature, 287, 28–30.

    Article  Google Scholar 

  • Ruiz-Hitzky, E., Rojo, M. and Lagaly, G. (1985) Mechanism of the grafting of organosilanes on mineral surfaces. Colloid Polymer Science, 263, 1025–1030.

    Article  Google Scholar 

  • Smirnov, V.A., Sukhadolski, G.A., Philippova, O.E. and Khokhlov, A.R. (1999) Use of luminescence of europium ions for the study of the interactions of polyelectrolyte hydrogels with multivalent cations. Journal of Physical Chemistry, B, 103, 7621–7626.

    Article  Google Scholar 

  • Suib, S.L. and Carrado, K.A. (1985) Zeolite photochemistry: Energy transfer between rare-earth and actinide ions in zeolites. Inorganic Chemistry, 24, 200–202.

    Article  Google Scholar 

  • Suib, S.L., Zerger, R.P., Morrison, T.I. and Shenoy, G.K. (1984) Journal of Chemical Physics, 80, 2203–2207.

    Article  Google Scholar 

  • Wang, Z., Lan, T. and Pinnavaia, T.J. (1998) Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nano-layers in an elastomeric epoxy polymer. Chemistry of Materials, 10, 1820–1826.

    Article  Google Scholar 

  • Zaitoun, M.A., Goken, D.M., Bailey, L.S., Kim, T. and Lin, C.T. (2000) Thermoanalysis and emission properties of Eu3+/Eu2+ in Eu3+-doped xerogels. Journal of Physical Chemistry, B, 104, 189–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukami, N., Tsujimura, M., Kuroda, K. et al. Preparation and Characterization of Eu-Magadiite Intercalation Compounds. Clays Clay Miner. 50, 799–806 (2002). https://doi.org/10.1346/000986002762090335

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002762090335

Key Words

Navigation