Skip to main content
Log in

A new extraction procedure for simultaneous quantitative determination of water-soluble metals in reaction products of clays and inorganic salts

  • Published:
Clays and Clay Minerals

Abstract

Kaolin, a possible source of Al, may be reacted with inorganic acids or salts to form different Al salts that can be further processed to prepare metallic Al. Although the reaction of kaolin and acid in aqueous solution can be monitored by chemical analysis of Al, the Al salts must be extracted from any unreacted kaolinite. Also, the lixiviation of Ti or Fe species present in kaolin should be monitored. A simple extraction procedure is reported to determine, quickly and quantitatively, water-soluble Al, Ti and Fe metals present in products of reaction of kaolin (85 wt.% kaolinite, 12 wt.% mica, 2 wt.% feldspar, 1 wt.% quartz) with inorganic salts, such as sodium hydrogensulfate, using conventional glassware for the glass reaction tubes. Optimum results are obtained with 250 mL glass reaction tubes. The best operating conditions found for this piece of equipment are: (1) sample weight of 0.05 g, (2) lixiviation time of 1 h, and (3) lixiviating agent, 50 mL of an aqueous solution of pH = 1 H2SO4 at its boiling point. Comparisons are made with soxhlet extraction and beaker and magnetic stirring methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayer, G., Kahr, G. and Mueller-Vonmoos, M. (1982) Reactions of ammonium sulphates with kaolinite and other silicate and oxide minerals. Clay Minerals, 17, 271–283.

    Article  Google Scholar 

  • Chung, F.H. (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525.

    Article  Google Scholar 

  • Colina, F.G. (1999) Procesos industriales de acondicionamiento de caolín para su utilización como materia prima en la síntesis de zeolita X. PhD dissertation. Department of Chemical Engineering and Metallurgy, Universitat de Barcelona, Spain, 382 pp.

    Google Scholar 

  • Davies, H., Dering, H.O. and Parker, T.W. (1945) Al2O3 from clay by an NH4 alum-NH3 process. U.S. Patent no. 2.375.977.

  • Dolcater, D.L., Syers, J.K. and Jackson, M.L. (1970) Titanium as free oxide and substituted forms in kaolinites and other soil minerals. Clays and Clay Minerals, 18, 71–79.

    Article  Google Scholar 

  • Fetterman, J.W. and Sun, S.C. (1963) Alumina extraction from a Pennsylvania diaspore clay by an ammonium sulfate process. Alumina, 1, 333–349.

    Google Scholar 

  • Ford, K.J.R. (1992) Leaching of fine and pelletised Natal kaolin using sulphuric acid. Hydrometallurgy, 29, 109–130.

    Article  Google Scholar 

  • Fouda, M.F.R., Amin, R.S. and Abd-Elzaher, M.M. (1993) Characterization of products of interaction between kaolin ore and ammonium sulphate. Journal of Chemical Technology and Biotechnology, 56, 195–202.

    Article  Google Scholar 

  • Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M. T. (1979) Método de obtención de alúmina a partir de arcillas y silicatos alumínicos en general. Spanish Patent no. 482.881.

  • Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M.T. (1982) Method for obtaining alumina from clays. U.S. Patent no. 4.342.729.

  • Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M.T. (1983) Procedimiento continuo de obtención de compuestos de aluminio a partir de silicatos alumínicos y otros minerales de aluminio. Spanish Patent no. 522.398.

  • Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M. T. (1985) Método de solubilización de los componentes metálicos de los filosilicatos. Spanish Patent no. 545.690.

  • Heller-Kallai, L. (1978) Reactions of salts with kaolinite at elevated temperatures. I. Clay Minerals, 13, 221–235.

    Article  Google Scholar 

  • Heller-Kallai, L. and Frenkel, M. (1979) Reactions of salts with kaolinite at elevated temperatures. II. Developments in Sedimentology, 27, 629–637.

    Article  Google Scholar 

  • Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.

    Article  Google Scholar 

  • Hulbert, S.F. and Huff, D.E. (1970) Kinetics of alumina removal from a calcined kaolin with nitric, sulphuric and hydrochloric acids. Clay Minerals, 8, 337–345.

    Article  Google Scholar 

  • Klevtsov, D.P., Logvinenko, V.A., Zolotovskii, B.P., Krivoruchko, O.P. and Buyanov, R.A. (1988) Kinetics of kaolinite dehydration and its dependence on mechanochemical activation. Journal of Thermal Analysis, 33, 531–535.

    Article  Google Scholar 

  • Malden, P.J. and Meads, R.E. (1967) Substitution by iron in kaolinite. Nature, 215, 844–846.

    Article  Google Scholar 

  • Martínez-Lope, M., García-Clavel, M.E. and Casais-Alvarez, M.T. (1991) Solubilization reaction of the alumina from kaolin by solid state reaction. Thermochimica Acta, 177, 77–82.

    Article  Google Scholar 

  • Maynard, R.N., Millman, N. and Iannicelli, J. (1969) A method for removing titanium dioxide impurities from kaolin. Clays and Clay Minerals, 17, 59–62.

    Article  Google Scholar 

  • Nagaishi, T., Ishiyama, S., Yoshimura, J., Matsumoto, M. and Yoshinaga, S. (1982) Reaction of ammonium sulphate with aluminium oxide. Journal of Thermal Analysis, 23, 201–207.

    Article  Google Scholar 

  • Peters, F.A., Johnson, W. and Kirby, R.C. (1963) Methods for producing alumina from clay: An evaluation of a potassium alum process. U.S. Department of the Interior, Bureau of Mines, Report of Investigations RI 6290.

  • Peters, F.A., Johnson, P.W. and Kirby, R.C. (1965) Methods for producing alumina from clay: An evaluation of two ammonium alum processes. US Department of the Interior, Bureau of Mines, Report of Investigations RI 6573.

  • Ruiz, M.T. (1988) Obtención de alúmina por ataque ácido de materiales no bauxíticos españoles activados por aportación de energía mecánica. PhD dissertation. Departamento de Química Inorgánica, Universidad de Sevilla, Spain, 355 pp.

    Google Scholar 

  • Seyfried, W.R. (1949) The ammonium sulfate process for the extraction of alumina from clay and its application in a plant in Salem, Oregon. Transactions of AIME, 182, 39.

    Google Scholar 

  • Solano, E. and Juan, D. (1995) Obtención de alúmina a partir de arcillas utilizando como agente disgregante el bisulfato sódico. Química e Industria, 14, 82–85.

    Google Scholar 

  • St. Clair, H.W., Ravitz, S.F., Sweet, A.T. and Plummer, C.E. (1944) The ammonium sulfate process for production of alumina from western clays. Transactions of AIME, 159, 255–256.

    Google Scholar 

  • Ziegenbalg, S. and Haake, G. (1983) Investigations into the alumina extraction from clay by hydrochloric and sulphuric acid leaching. Light Metals, 1119–1143.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando G. Colina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colina, F.G., Esplugas, S. & Costa, J. A new extraction procedure for simultaneous quantitative determination of water-soluble metals in reaction products of clays and inorganic salts. Clays Clay Miner. 50, 401–405 (2002). https://doi.org/10.1346/000986002760833774

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002760833774

Key Words

Navigation