Skip to main content
Log in

Site occupancies by iron in nontronites

  • Published:
Clays and Clay Minerals

Abstract

Twelve nontronites and two ferruginous smectites have been characterized with respect to Fe3+ occupancy of tetrahedral sites. The techniques used were near infrared, Fe-K X-ray absorption near-edge and X-ray absorption fine-structure spectroscopies, along with two X-ray diffraction techniques. The results show that calculations of the structural formulae of many nontronites should be adjusted to include Fe3+ in tetrahedral sites. The nontronite from Spokane County, Washington, (∼44% Fe2O3) is essentially an end-member with its non-siliceous tetrahedral sites occupied by Fe3+. Samples with chemical compositions similar to Garfield nontronite (∼36.5% Fe2O3) may have small amounts (<5% of total Fe3+) of tetrahedral Fe3+. Tetrahedral Fe3+ is unlikely to be present in samples containing less than ∼;34% Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. and Drits, V.A. (1983) Use of diffraction and Mossbauer methods for the structural and crystallochemical characterisation of nontronites. Journal of Applied Crystallography, 16, 374–383.

    Article  Google Scholar 

  • Besson, G., Drits, V.A., Dainyak, L.G. and Smoliar, B.B. (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Minerals, 22, 465–478.

    Article  Google Scholar 

  • Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. and Scheinost, A.C. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: structural analysis of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. Pp. 413–419 in: Clays for Our Future. Proceedings 11th International Clay Conference, Ottawa, Canada (H. Kodama, A.R. Mermut and J.K. Torrance, editors).

  • Bodine, M.W., Jr. (1987) CLAYFORM: A FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral in a structural formula. Computers and Geosciences, 13, 77–88.

    Article  Google Scholar 

  • Bonnin, D., Calas, G., Suquet, H. and Pexerat, H. (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Physics and Chemistry of Minerals, 12, 55–64.

    Google Scholar 

  • Busing, W.R., Martin, K.O. and Levy, H.A. (1962) ORFLS, a FORTRAN crystallographic least-squares refinement program. Oak Ridge National Laboratory, Technical Manual No. 305. 75 pp.

  • Cardile, C.M. and Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays and Clay Minerals, 33, 295–300.

    Article  Google Scholar 

  • Cardile, C.M. and Slade, P.G. (1988) Structural studies of vermiculites with different iron contents by 57Fe Mossbauer spectroscopy. Neues Jahrbuch für Mineralogie Monatshefte, 297–308.

  • Drits, V.A. and Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Micro Divided Silicates and Carbons. Springer Verlag, Berlin, 371 pp.

    Book  Google Scholar 

  • Dyar, M.D. (1987) A review of Mössbauer data on trioctahedral micas: evidence for tetrahedral Fe3+ and cation ordering. American Mineralogist, 72, 102–112.

    Google Scholar 

  • Dyar, M.D. (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas — Discussion. American Mineralogist, 78, 665–668.

    Google Scholar 

  • Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Minerals, 12, 181–194.

    Article  Google Scholar 

  • Goodman, B.A., Russell, J.D., Fraser, A.R. and Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Johnston, J.H. and Cardile, C.M. (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays and Clay Minerals, 33, 21–30.

    Article  Google Scholar 

  • Keeling, J.L., Raven, M.D. and Gates, W.P. (2000) Geology and preliminary characterization of two nontronites from Uley graphite mine, South Australia. Clays and Clay Minerals, 46, 537–548.

    Article  Google Scholar 

  • Kerr, P.F. (1951) Preliminary report: Reference Clay Minerals. American Petroleum Institute. Research Project No. 49. Columbia University, New York.

    Google Scholar 

  • Klug, H.P. and Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley-Interscience, New York, 966 pp.

    Google Scholar 

  • Lear, P.R. and Stucki, J.W. (1987) Intervalence electron transfer and magnetic exchange in reduced nontronites. Clays and Clay Minerals, 35, 373–378.

    Article  Google Scholar 

  • Lear, P.R. and Stucki, J.W. (1990) Magnetic properties and site occupancy of iron in nontronite. Clay Minerals, 25, 3–13.

    Article  Google Scholar 

  • Luca, V. (1991) Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mossbauer spectroscopy. Clays and Clay Minerals, 39, 467–477.

    Article  Google Scholar 

  • Luca, V. and Cardile, C.M. (1989) Improved detection of tetrahedral Fe3+ in nontronite SWa-1 by Mössbauer spectroscopy. Clay Minerals, 24, 555–559.

    Article  Google Scholar 

  • MacEwan, D.M.C. and Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197–248 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W Brindley and G. Brown, editors). Monograph, 5, Mineralogical Society, London.

    Google Scholar 

  • Madejová, J., Komadel, P. and Cecil, B. (1994) Infrared study of octahedral site populations in smecties. Clay Minerals, 29, 319–326.

    Article  Google Scholar 

  • Manceau, A. and Gates, W.P. (1997) Surface structural model for ferrihydrite. Clays and Clay Minerals, 43, 448–460.

    Article  Google Scholar 

  • Manceau, A., Bonnin, D., Stone, W.E.E. and Sanz, J. (1990) Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS. Physics and Chemistry of Minerals, 17, 363–370.

    Article  Google Scholar 

  • Manceau, A., Chateigner, D. and Gates, W.P. (1998) Polarized EXAFS, distance-valence least-squares modeling (DLVS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347–365.

    Article  Google Scholar 

  • Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D. and Stucki, J.W (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: 1. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.

    Article  Google Scholar 

  • Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Zeitschrift für Pflanzenernahrung und Bodenkunde, 150, 279–285.

    Article  Google Scholar 

  • Murad, E., Cashion, J.D. and Brown, L.J. (1990) Magnetic ordering in Garfield nontronite under applied magnetic fields. Clay Minerals, 25, 261–269.

    Article  Google Scholar 

  • Norrish, K. and Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta, 33, 431–453.

    Article  Google Scholar 

  • Plançon, A. (1981) Diffraction by layer structures containing different kinds of layers and stacking faults. Journal of Applied Crystallography, 14, 300–304.

    Article  Google Scholar 

  • Rancourt, D.G. (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas — Reply. American Mineralogist, 78, 669–671.

    Google Scholar 

  • Rancourt, D.G., Dang, M.-Z. and Lalonde, A.E. (1992) Mossbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. American Mineralogist, 77, 34–43.

    Google Scholar 

  • Rémy, P. and Boullé, A. (1961) Sur le différentes variétés de phosphate de fer FePO3 hydraté et anhydre. Comptes Rendus de l’Academie des Sciences, Paris, 253, 2699–2701.

    Google Scholar 

  • Rozenson, I. and Heller Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays and Clay Minerals, 25, 94–101.

    Article  Google Scholar 

  • Sakharov, B.A., Naumov, A.S. and Drits, V.A. (1982a) X-ray intensities scattered by layer structure with short range ordering parameters S ≽ 1 and G ≽ 1. Doklady Akademii Nauk SSSR, 265, 871–874.

    Google Scholar 

  • Sakharov, B.A., Naumov, A.S. and Drits, V.A. (1982b) X-ray diffraction by mixed-layer structures with random distribution of stacking faults. Doklady Akademii Nauk SSSR, 265, 339–343.

    Google Scholar 

  • Sherman, D.M. and Vergo, N. (1988) Optical (diffuse reflectance) and Mössbauer spectroscopic study of nontronite and related Fe-bearing smectites. American Mineralogist, 73, 1346–1354.

    Google Scholar 

  • Slade, P.G., Stone, P.A. and Radoslovich, E.W. (1985) Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites. Clays and Clay Minerals, 33, 51–61.

    Article  Google Scholar 

  • Smoliar-Zviagina, B.B. (1993) Relationships between structural parameters and chemical composition of micas. Clay Minerals, 21, 377–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Gates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gates, W.P., Slade, P.G., Manceau, A. et al. Site occupancies by iron in nontronites. Clays Clay Miner. 50, 223–239 (2002). https://doi.org/10.1346/000986002760832829

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002760832829

Key Words

Navigation