Skip to main content
Log in

In situ characterization and differentiation of kaolinites in lateritic weathering profiles using infrared microspectroscopy

  • Published:
Clays and Clay Minerals

Abstract

Lateritic weathering kaolinites have been characterized in situ and differentiated for the first time by means of infrared microspectroscopy (IRMS). Four classical OH-stretching bands have been observed in the Fourier transform infrared (FTIR) spectra, at 3695, 3668, 3650 and 3620 cm−1, denoted ν1, ν2, ν3 and ν4, respectively, plus a band at 3595 cm−1 associated with the octahedral substitution of Fe3+ for Al3+. Infrared microspectroscopy of thin-sections of lateritic weathering profiles provides useful information on the types of kaolinite present in different horizons of the profile. The spectra obtained from large well-ordered kaolinite crystals look like those obtained by diffuse reflectance in that, compared with the KBr disk spectra of <2 µm powders, bands at 3668 and 3650 cm−1 are enhanced, and the strong absorption of KBr disks at 3695 cm−1 is replaced by a broad weaker band from 3700–3680 cm−1. In laterites, these large well-ordered kaolinites often exhibit a band at 3595 cm−1 indicative of significant Fe3+ substitution for Al3+ in the structure. The IR microspectra obtained from regions of small, more poorly-ordered kaolinites do not differ so markedly from that of KBr disks. All show enhanced absorption around 3650 cm−1 compared with well-ordered kaolinites, indicating that the disorder is due, at least in part, to domains of dickite-like and/or nacrite-like stacking in their structure. The 3595 cm−1 band is always weaker than that of the well-ordered kaolinite in the same profile. The IRMS data from well-characterized reference kaolinites show that the ratio Aν2/Aν3 is a pertinent IR order index for kaolinites. The larger this index, the larger is the area of the 3595 cm−1 band, and the larger and the more ordered is the kaolinite sample. It is suggested that the diversity of FTIR spectra observed reflects intergrowths of kaolinite-dickite polymorphs, or at least mixtures of high- and low-defect kaolinites which are frequently encountered in the lateritic geosphere rather than pure kaolinitic phases. The largest kaolinites having secondary crystallized in voids are the most ordered and the most ferruginous and have been considered as useful mineralogical tracers of the recent evolution of old lateritic terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, T. (1994) La kaolinite: un dosimètre des rayonnements naturels. Application au traçage de migrations anciennes de radioéléments dans la géosphère. Ph.D. thesis, Université de Paris VII, Paris, France, 205 pp.

    Google Scholar 

  • Ambrosi, J.-P. and Nahon, D. (1986) Petrological and geochemical differentiation of lateritic iron crust profiles. Chemical Geology, 57, 371–393.

    Article  Google Scholar 

  • Angel, B.R., Jones, J.P.E. and Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. I. Clay Minerals, 10, 247–255.

    Article  Google Scholar 

  • Balan, E., Allard, Th., Boizot, B., Morin, G. and Muller, J.-P. (1999) Structural Fe3+ in natural kaolinites: new insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies. Clays and Clay Minerals, 47, 605–616.

    Article  Google Scholar 

  • Barrios, J., Plançon, M., Cruz, I. and Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinte — Relationship with the infrared spectra. Clays and Clay Minerals, 25, 422–429.

    Article  Google Scholar 

  • Beauvais, A. (1991) Paléoclimats et dynamique d’un paysage cuirassé du Centrafrique. Morphologie, Pétrologie et Géochimie. Ph.D. thesis, Université de Poitiers, Poitiers, France, 317 pp.

    Google Scholar 

  • Beauvais, A. (1999) Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa. Geochimica et Cosmochimica Acta, 63, 3939–3957.

    Article  Google Scholar 

  • Beauvais, A. and Colin, F. (1993) Formation and transformation processes of iron duricrust systems in tropical humid environment. Chemical Geology, 106, 77–151.

    Article  Google Scholar 

  • Beauvais, A. and Tardy, Y. (1991) Formation et dégradation des cuirasses ferrugineuses sous climat tropical humide, à la lisière de la forêt equatoriale. Comptes Rendus de l’Académie des Sciences, Paris, Séries II, 13, 1539–1545.

    Google Scholar 

  • Bell, V.A., Citro, V.R. and Hodge, G.D. (1991) Effect of pellet pressing on the infrared spectrum of kaolinite. Clays and Clay Minerals, 39, 290–292.

    Article  Google Scholar 

  • Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738–744.

    Article  Google Scholar 

  • Brindley, G.W., Kao C.-C., Harrison, J.L., Lipsicas, M. and Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239–249.

    Article  Google Scholar 

  • Cantinolle, P., Didier, P., Meunier, J.-D., Parron, C., Guendon, J.-L., Bocquier, G. and Nahon, D. (1984) Kaolinites ferrifères et oxyhydroxydes de fer et d’alumine dans les bauxites des Canonettes (S. E. de la France). Clay Minerals, 19, 125–135.

    Article  Google Scholar 

  • Cases, J.-M., Liétard, O., Yvon, J. and Delon, J.-F. (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnees. Bulletin de Minéralogie, 105, 439–455.

    Google Scholar 

  • Cruz-Cumplido, M., Sow, C. and Fripiat, J.J. (1982) Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins. Bulletin de Minéralogie, 105, 493–498.

    Google Scholar 

  • Delineau, T., Allard, T., Muller, J.-P., Barres, O., Yvon, J. and Cases, J.-M. (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays and Clay Minerals, 42, 308–320.

    Article  Google Scholar 

  • Didier, P., Nahon, D., Fritz, B. and Tardy, Y. (1983) Activity of water as a geochemical controlling factor in ferricretes. A thermodynamic model in the system kaolinite Fe-Al oxyhydroxides. Sciences Geologiques, 71, 25–44.

    Google Scholar 

  • Farmer, V.C. (1964) Infrared absorption of hydroxyls groups in kaolinite. Science, 145, 1189–1190.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4. The Mineralogical Society, London, 539 pp.

    Book  Google Scholar 

  • Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Minerals, 33, 601–604.

    Article  Google Scholar 

  • Farmer, V.C. (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta, 56A, 927–930.

    Article  Google Scholar 

  • Farmer, V.C. and Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.

    Article  Google Scholar 

  • Frost, R.L. and Johansson, U. (1998) Combinations bands in the infrared spectroscopy of kaolins — a drift spectroscopic study. Clays and Clay Minerals, 46, 466–477.

    Article  Google Scholar 

  • Frost, R.L. and Van der Gaast, S.J. (1997) Kaolinite hydroxyls — a Raman microscopy study. Clay Minerals, 32, 471–484.

    Article  Google Scholar 

  • Gaite, J.-M., Ermakoff, P. and Muller, J.-P. (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite. Physics and Chemistry of Minerals, 20, 242–247.

    Article  Google Scholar 

  • Gaite, J.-M., Ermakoff, P., Allard, Th. and Muller, J.-P. (1997) Paramagnetic Fe3+: a sensitive probe for disorder in kaolinite. Clays and Clay Minerals, 45, 496–505.

    Article  Google Scholar 

  • Giese, R.F., Jr. (1988) Kaolin minerals. Structures and stability. Pp. 29–66 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Herbillon, A.J. (1980) Mineralogy of oxisols and oxic materials. Pp. 109–126 in: Soils with Variable Charge (B.K.G. Theng, editor). New Zealand Society of Soil Science, Wellington, New Zealand.

    Google Scholar 

  • Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Pp. 229–235 in: Proceedings of the 11th National Clay Conference, Ottawa (A. Swineford, editor). Pergamon Press, New York.

  • Johansson, U., Holmgren, A., Forsling, W. and Frost, R. (1998) Isotopic exchange of kaolinite hydroxyl protons: a diffuse reflectance infrared Fourier transform spectroscopy study. Analyst, 123, 641–645.

    Article  Google Scholar 

  • Johnston, C.T., Sposito, G. and Birge, R.R. (1985) Raman spectroscopy study of kaolinite in aqueous suspension. Clays and Clay Minerals, 33, 483–489.

    Article  Google Scholar 

  • Johnston, C.T., Agnew, S.F. and Bish, D.L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, 38, 573–588.

    Article  Google Scholar 

  • Johnston, C.T., Helsen, J., Schoonheydt, R.A., Bish, D.L. and Agnew, S.F. (1998) Single-crystal Raman spectroscopic study of dickite. American Mineralogist, 83, 75–84.

    Article  Google Scholar 

  • Jones, J.P.E., Angel, B.R. and Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. II. Clay Minerals, 10, 257–270.

    Article  Google Scholar 

  • Ledoux, R.L. and White, J.L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 47–49.

    Article  Google Scholar 

  • Lombardi, G., Russell, J.D. and Keller, W. D. (1987) Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin. Clays and Clay Minerals, 35, 321–335.

    Article  Google Scholar 

  • Lucas, Y., Chauvel, A. and Ambrosi, J.-P. (1987) Processes of aluminium and iron accumulation in latosols developed on quartz-rich sediments from central Amazonia (Manaus, Brazil). Pp. 289–299 in: Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral formation, Granada, Spain (R. Rodríguez-Clemente and Y. Tardy, editors). Madrid: Consejo Superior de Investigaciones Cientificas; Paris: Centre National de la Recherche Scientifique (CNRS).

  • Marquardt, D.W. (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society of Industrial Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • Meads, R.E. and Malden, P.S. (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Minerals, 10, 313–345.

    Article  Google Scholar 

  • Mendelovici, E., Yariv, S.H. and Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterite. I. Infrared spectrosocopy and chemical dissolution evidence. Clay Minerals, 14, 323–331.

    Article  Google Scholar 

  • Mestdagh, M.M., Vielvoye, L. and Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 1–13.

    Article  Google Scholar 

  • Mestdagh, M.M., Herbillon, A.J., Rodrique, L. and Rouxhet, P.G. (1982) Evaluation du rôle du fer structural sur la cristalinité des kaolinites. Bulletin de Mineralogie, 105, 457–466.

    Google Scholar 

  • Millot, G. (1970) Geology of Clays: Weathering, Sedimentation, Geochemistry. Springer, New York, 429 pp.

    Book  Google Scholar 

  • Muller, J.-P. and Bocquier, G. (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. Pp. 186–194 in: Proceedings of the International Clay Conference, Denver, 1985 (L.G. Schultz, H. van Olphen and F. A. Mumpton, editors). The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  • Muller, J.-P. and Calas, G. (1989) Tracing kaolinites through their defect centers: kaolinite paragenesis in a laterite (Cameroon). Economic Geology, 84, 694–707.

    Article  Google Scholar 

  • Muller, J.-P., Manceau, A., Calas, G., Allard, T., Ildefonse, Ph. and Hazemann, J.-L. (1995) Crystal chemistry of kaolinite and Fe-Mn oxides: relation with formation conditions of low temperature systems. American Journal of Science, 295, 1115–1155.

    Article  Google Scholar 

  • Murray, H.H. (1988) Kaolin minerals: their genesis and occurrences. Pp. 67–90 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Nahon, D. (1991) Introduction to the Petrology of Soils and Chemical Weathering. John Wiley, New York, 313 pp.

    Google Scholar 

  • Parker, T.W. (1969) Classification of kaolinites by infrared spectroscopy. Clay Minerals, 8, 19–35.

    Article  Google Scholar 

  • Petit, S. and Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron rich kaolinites. Clay Minerals, 25, 181–196.

    Article  Google Scholar 

  • Plançon, A., Giese, R.F. and Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, 23, 249–260.

    Article  Google Scholar 

  • Plançon, A., Giese, R.F., Snyder, R., Drits, V.A. and Bookin, A.S. (1989) Stacking faults in the kaolin-group minerals: defect structures of kaolinite. Clays and Clay Minerals, 37, 203–210.

    Article  Google Scholar 

  • Prost, R., Dameme, A., Huard, E., Driard, J. and Leydecker, J.-P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600°K. Clays and Clay Minerals, 37, 464–468.

    Article  Google Scholar 

  • Rengasamy, P. (1976) Substitution of iron and titanium in kaolinites. Clays and Clay Minerals, 24, 264–266.

    Article  Google Scholar 

  • Rintoul, L. and Fredericks, P.M. (1995) Infrared microspectroscopy of bauxitic pisoliths. Applied Spectroscopy, 49, 1608–1616.

    Article  Google Scholar 

  • Rouxhet, P.G., Samadacheata, N., Jacobs, H. and Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Minerals, 12, 171–179.

    Article  Google Scholar 

  • Tardy, Y. (1993) Pétrologie des Latérites et des Sols Tropicaux. Masson, Paris, 535.

  • Van Olphen, H. and Fripiat, J.-J. (1979) Data Handbook for Clay Minerals and other Non-metallic Minerals. Pergamon Press, Oxford, UK, 346 pp.

    Google Scholar 

  • Wiewióra, A., Wieckowski, T. and Sokolowska, A. (1979) The raman spectra of kaolinite subgroup minerals and of pyrophyllite. Archiwum Mineralogiczne, 135, 5–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anicet Beauvais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauvais, A., Bertaux, J. In situ characterization and differentiation of kaolinites in lateritic weathering profiles using infrared microspectroscopy. Clays Clay Miner. 50, 314–330 (2002). https://doi.org/10.1346/00098600260358076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/00098600260358076

Key Words

Navigation