Skip to main content
Log in

Early stages of volcanic tuff alteration in hydrothermal experiments: Formation of mixed-layer illite-smectite

  • Published:
Clays and Clay Minerals

Abstract

Volcanic tuff from the Cabo de Gata region in Almería, southeastern Spain, was altered under hydrothermal conditions at different temperatures (60 to 180°C), reaction times (60 to 360 days), and reacting solutions (deionized water and NaCl and KCl solutions with Na/K ratios from 0.01 to 100, and a total salt concentration of 0.1 to 1 M).

X-ray diffraction (XRD) patterns of the reacted samples revealed a very weak, broad peak at ∼13 Å that migrated to 17 Å upon glycolation. Comparison between simulated (NEWMOD) and experimental XRD patterns indicated that the neoformed phase is a random mixed-layer illite-smectite (I-S) with 75% expandable layers. Fourier transform infrared (FTIR) spectroscopy showed that I-S formation was most extensive for high pH (8–9) solutions, corresponding to dilute solutions and, especially, to deionized water. Analytical electron microscopy (AEM) analyses of isolated I-S particles showed that most of them are smectite-rich I-S regardless of the experimental conditions, in agreement with XRD results. The I-S particles had a wide range of octahedral Mg contents. The pH and Na, K, Ca and Mg concentrations in the final solutions suggested cation (including H+) exchange as a major process in the alteration experiments. Analysis of aqueous activity diagrams (log aK/aHvs. log \({a_{{\rm{Si}}{{\rm{O}}_{\rm{2}}}}}\)) showed that some solution compositions are consistent and some are inconsistent with I-S formation. These results, combined with complementary electron microscopy analyses (de la Fuente et al., 2000a), are interpreted to be due to direct transformation of the glass into I-S in a process controlled by glass composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aja, S.U. (1991) Illite equilibria in solutions: III. A re-interpretation of the data of Sass et al. (1987). Geochimica et Cosmochimica Acta, 55, 3431–3435.

    Article  Google Scholar 

  • Aja, S.U., Rosenberg, P.E. and Kittrick, J.A. (1991) Illite equilibria in solutions: I. Phase relationships in the system K2O-MgO-Al2O3-SiO2-H2O between 25 and 250°C. Geochimica et Cosmichimica Acta, 55, 1353–1364.

    Article  Google Scholar 

  • Alt, J. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, 19, 570–573.

    Article  Google Scholar 

  • Amouric, M. and Olives, J. (1991) Illitization of smectite as seen by high-resolution transmission electron microscopy. European Journal of Mineralogy, 3, 831–835.

    Article  Google Scholar 

  • Bellon, H. (1976) Séries magmatiques néogènes et quaternaires du pourtour de la Méditerrané occidentale, comparées dans leur cadre geochronométrique — implications geodinamiques. PhD thesis, Université de Paris Sud, France, 367 pp.

    Google Scholar 

  • Bellon, H., Bordet, P. and Montenat, C. (1983) Chronologie du magmatisme néogene des Cordillères Bétiques (Espagne meridionale). Bulletin Societè Geologique de France, 25, 205–217.

    Article  Google Scholar 

  • Bradley, G.W. and Grim, R.E. (1951) High temperature thermal effects of clay and related materials. American Mineralogist, 36, 182–201.

    Google Scholar 

  • Brindley, G.W. and Lemaitre, J. (1987) Thermal, oxidation and reduction reactions of clay minerals. Pp. 319–370 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Monograph 6, Mineralogical Society, London.

    Google Scholar 

  • Caballero, E., Reyes, E., Huertas, F., Linares, J. and Pozzuoli, A. (1991) Early-stage smectites from pyroclastic rocks of Almería (Spain). Chemical Geology, 89, 353–358.

    Article  Google Scholar 

  • Casey, W.H. and Bunker, B. (1990) Leaching of mineral and glass surfaces during dissolution. Pp. 397–426 in: Mineral-Water Interface Geochemistry, (M.F. Hochella, Jr. and A.F. White, editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Cerling, T.E., Brown, F.H. and Bowman, J.R. (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chemical Geology, 52, 281–293.

    Google Scholar 

  • Christidis, G., Scott, P. and Marcopoulos, T. (1995) Origin of the bentonite deposits of eastern Milos, Aegean, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 63–77.

    Article  Google Scholar 

  • Crovisier, J.L., Honnorez, J. and Fritz, B. (1992) Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling. Applied Geochemistry, Supplementary Issue, 1, 55–81.

    Article  Google Scholar 

  • Cuadros, J. and Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: Constraints on the smectite-to-illite transformation mechanism. American Mineralogist, 83, 762–774.

    Article  Google Scholar 

  • Cuadros, J. and Linares, J. (1996) Experimental kinetic study of the smectite-to-illite transformation. Geochimica et Cosmochimica Acta, 60, 439–453.

    Article  Google Scholar 

  • de’ Gennaro, M., Langella, A., Cappelletti, P. and Colella, C. (1999) Hydrothermal conversion of trachytic glass to zeolite. 3. Monocationic model glasses. Clays and Clay Minerals, 47, 348–357.

    Article  Google Scholar 

  • de la Fuente, S., Cuadros, J., Fiore, S. and Linares, J. (2000a) Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays and Clay Minerals, 48, 339–350.

    Article  Google Scholar 

  • de la Fuente, S., Cuadros, J. and Linares, J. (2000b) Quantification of mixed-layer illite-smectite in glass matrices by Fourier-transform infrared spectroscopy. Clays and Clay Minerals, 48, 299–303.

    Article  Google Scholar 

  • Decher, A., Bechtel, A., Echle, W., Friedrich, G. and Hoernes, S. (1996) Stable isotope geochemistry of bentonites from the island of Milos (Greece). Chemical Geology, 129, 101–113.

    Article  Google Scholar 

  • Di Battistini, G., Toscani, L., Iaccarino, S. and Villa, I.M. (1987) K/Ar ages and the geological setting of calc-alkaline volcanic rocks from Sierra de Gata, SE Spain. Neues Jahrbuch für Mineralogie, Monatshefte, 1987(8), 337–383.

    Google Scholar 

  • Drits, V.A., Salyn, A.L. and Šucha, V. (1996) Structural transformations of interstratified illite-smectites from Dolná Ves hydrothermal deposits: dynamics and mechanisms. Clays and Clay Minerals, 44, 181–190.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The Layer Silicates. Pp. 331–363 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.

    Chapter  Google Scholar 

  • Fernández Soler, J.M. (1992) El volcanismo calco-alcalino de Cabo de Gata (Almería). PhD thesis, The University of Granada, Spain, 243 pp.

    Google Scholar 

  • Fiore, S., Huertas, F.J., Tazaki, K., Huertas, F. and Linares, J. (1999) A low temperature experimental alteration of a rhyolitic obsidian. European Journal of Mineralogy, 11, 1–15.

    Article  Google Scholar 

  • Foster, M. (1960) Interpretation of the composition of trioctahedral micas. US Geological Survey Professional Paper, 354B, 11–43.

    Google Scholar 

  • Ghiara, M.R., Franco, E., Petti, C., Stanzione, D. and Valentino, G.M. (1993) Hydrothermal interaction between basaltic glass, deionized water and seawater. Chemical Geology, 104, 125–138.

    Article  Google Scholar 

  • Grauby, O., Petit, S., Decarreau, A. and Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623–635.

    Article  Google Scholar 

  • Harvey, C.C. and Browne, P.R. (1991) Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays and Clay Minerals, 39, 614–621.

    Article  Google Scholar 

  • Inoue, A., Watanabe, T., Kohoyama, N. and Brusewitz, A.M. (1990) Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden. Clays and Clay Minerals, 38, 241–249.

    Article  Google Scholar 

  • Inoue, A., Utada, M. and Wakita, K. (1992) Smectite-to-illite conversion in natural hydrothermal systems. Applied Clay Science, 7, 131–145.

    Article  Google Scholar 

  • Kawano, M. and Tomita, K. (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C. Clays and Clay Minerals, 40, 666–674.

    Article  Google Scholar 

  • Kawano, M., Tomita, K. and Kamino, Y. (1993) Formation of clay minerals during low temperature. Experimental alteration of obsidian. Clays and Clay Minerals, 41, 431–441.

    Article  Google Scholar 

  • Keene, J.B., Clague, D.A. and Nishimori, R.K. (1976) Ex perimental hydrothermal alteration of tholeiitic basalt: resultant mineralogy and textures. Journal of Sedimentary Petrology, 46, 647–653.

    Google Scholar 

  • Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H. and De Braal, J.D. (1988) SOLMINEQ.88: A computer program for geochemical modelling of water-rock interaction. US Geological Survey Water-Resources Investigation Report 88–4227, 420 pp.

  • Lanson, B. and Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis. American Journal of Science, 291, 473–506.

    Article  Google Scholar 

  • Linares, J. (1985) The process of bentonite formation in Cabo de Gata, Almería, Spain. Mineralogica et Petrographica Acta, 29-A, 17–33.

    Google Scholar 

  • Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets. Pp. 504–514 in: Differential Thermal Analysis, volume 1 (R.C. Mackenzie, editor). Academic Press, London and New York.

    Google Scholar 

  • Magonthier, M.C., Petit, J.C. and Dran, J.C. (1992) Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion. Applied Geochemistry, Supplementary Issue, 1, 83–93.

    Article  Google Scholar 

  • Nadeau, P.H. and Reynolds, R.C., Jr. (1981) Volcanic components in pelitic sediments. Nature, 294, 72–74.

    Article  Google Scholar 

  • Papin, A., Sergent, J. and Robert, J. (1997) Intersite OH-F distribution in an Al-rich synthetic phlogopite. European Journal of Mineralogy, 9, 501–508.

    Article  Google Scholar 

  • Reynolds, R.C., Jr. (1985) NEWMOD: A computer program for the calculation of one-dimensional patterns of mixed-layered clays. R.C. Reynolds, 8 Brook Drive, Hanover, New Hampshire, USA.

    Google Scholar 

  • Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks. US Geological Survey Bulletin, 1401, 76 pp.

  • Shiraki, R. and Iiyama, T. (1990) Na-K ion exchange reaction between rhyolitic glass and (Na, K) Cl aqueous solution under hydrothermal conditions. Geochimica et Cosmochimica Acta, 54, 2923–2931.

    Article  Google Scholar 

  • Šucha, V., Kraus, I., Gerthofferová, H., Peteš, J. and Sereková, M. (1993) Smectite to illite conversion in bentonites and shales of the east Slovak Basin. Clay Minerals, 28, 243–253.

    Article  Google Scholar 

  • Šucha, V., Elsass, F., Eberl, D.D., Kuchta, L., Madejová, J., Gates, W.P. and Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. American Mineralogist, 83, 58–67.

    Article  Google Scholar 

  • Tazaki, K., Fyfe, W.S. and van der Gaast, S.J. (1989) Growth of clay minerals in natural and synthetic glasses. Clays and Clay Minerals, 37, 348–354.

    Article  Google Scholar 

  • Thomassin, J.H., Boutonnat, F., Touray, J.C. and Baillif, P. (1989) Geochemical role of the water/rock ratio during the experimental alteration of a synthetic basaltic glass at 50°C. An XPS and STEM investigation. European Journal of Mineralogy, 1, 261–274.

    Article  Google Scholar 

  • Tomita, K., Yamane, H. and Kawano, M. (1993) Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals, 41, 655–661.

    Article  Google Scholar 

  • Velde, B. (1985) Smectites. Pp. 104–169 in: Clay Minerals. A Physico-Chemical Explanation of their Occurrence (C.E. Weaver and L.D. Pollard, editors). Developments in Sedimentology, 40. Elsevier, New York.

    Google Scholar 

  • Weaver, C.E. and Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, 15. Elsevier, New York, 213 pp.

    Google Scholar 

  • Yates, D.M. and Rosenberg, P.E. (1996) Formation and stability of end member illite: I. Solution equilibration experiments at 100–250°C and Pv,soln. Geochimica et Cosmochimica Acta, 60, 1873–1883.

    Article  Google Scholar 

  • Zevenbergen, C., Van Reeuwijk, L.P., Bradley, J.P., Bloemen, P. and Comans, R.N.J. (1996) Mechanism and conditions of clay formation during natural weathering of MSWI bottom ash. Clays and Clay Minerals, 44, 546–552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Cuadros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, S., Cuadros, J. & Linares, J. Early stages of volcanic tuff alteration in hydrothermal experiments: Formation of mixed-layer illite-smectite. Clays Clay Miner. 50, 578–590 (2002). https://doi.org/10.1346/000986002320679468

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002320679468

Key Words

Navigation