Skip to main content
Log in

Refinement of the crystal structure of cronstedtite-2H2

  • Published:
Clays and Clay Minerals

Abstract

The crystal structure of cronstedtite-2H2 was refined in a hexagonal cell, space group P63, Z = 2, using two acicular crystals from Wheal Maudlin, Cornwall, England, and from Pribram, Czech Republic. The Wheal Maudlin sample has the chemical composition \(\left( {{\rm{Fe}}_{2.291}^{2 + }{\rm{Fe}}_{0.709}^{3 + }} \right)\left( {{\rm{S}}{{\rm{i}}_{1.298}}{\rm{Fe}}_{0.707}^{3 + }{\rm{A}}{{\rm{l}}_{0.004}}} \right){{\rm{O}}_5}{\left( {{\rm{OH}}} \right)_4}\) and the Příbram sample has the composition \(\left( {{\rm{Fe}}_{2.269}^{2 + }{\rm{Fe}}_{0.731}^{3 + }} \right)\left( {{\rm{S}}{{\rm{i}}_{1.271}}{\rm{Fe}}_{0.724}^{3 + }{\rm{A}}{{\rm{l}}_{0.005}}} \right){{\rm{O}}_5}{\left( {{\rm{OH}}} \right)_4}\). The results of refinements are as follows: a = 5.500(1), c = 14.163(2) Å, V = 371.08(8) Å3, R = 3.83%, from 381 independent reflections, and a = 5.4927(1), c = 14.1481(2) Å, V = 369.70(4) Å3, R = 4.77%, from 1088 independent reflections for the Wheal Maudlin and Příbram samples, respectively. The best Fovs. Fc agreement was achieved when the structure was interpreted as merohedral twin; several possible twinning laws are discussed. The cronstedtite layer consists of one tetrahedral sheet and one octahedral sheet. There is one octahedral (M1) position, occupied by Fe only, and two tetrahedral (T1, T2) positions in the structure. Refinement of occupancy of tetrahedral sites led to values Si:Fe = 0.45:0.55(1) (Wheal Maudlin) and 0.432:0.568(8) (Příbram) in T1, and Si: Fe = 0.99:0.01(1) (Wheal Maudlin) and 0.888:0.112(7) (Příbram) in 72. Whereas the size of T1 is reasonable (average dT1-O = 1.693 Å (Wheal Maudlin), 1.691 Å (Příbram)), T2 is unusually large: (dT2-O= 1.740 Å (Wheal Maudlin), 1.737 Å (Příbram)) with respect to the small or almost zero Fe content. As an explanation, an alternative structure model comprising a certain amount of vacancies in T2 is presented. The tetrahedral rotation angle α is highly positive (+12.1° and +12.5° for the Wheal Maudlin and Příbram samples, respectively), and the layer belongs to the Franzini type A. Distortion parameters of octahedra and tetrahedra are given for both samples. One hydrogen atom engaged in the hydrogen bond was located in the Wheal Maudlin sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmann, R. and Donnay, G. (1973) The crystal structure of jugoldite. Mineralogical Magazine, 39, 271–281.

    Article  Google Scholar 

  • Anderson, C.S. and Bailey, S.W. (1981) A new cation ordering pattern in amesite-2H2American Mineralogist, 66, 185–195.

    Google Scholar 

  • Angel, R.J. and Woodland, A.B. (1998) Crystal structure of spinelloid II in the system Fe3O4-Fe2SiO4. European Journal of Mineralogy, 10, 607–611.

    Article  Google Scholar 

  • Arakheeva, A.V. and Karpinskii, O.G. (1987) Crystal structure of the ternary hexagonal Ca ferrite Ca3.0Fe14.82O25. Kristallografiya, 32, 59–61 (in Russian).

    Google Scholar 

  • Bailey, S.W. (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays and Clay Minerals, 17, 355–371.

    Article  Google Scholar 

  • Bailey, S.W. (1988) Polytypism of 1:1 layer silicates. Pp. 9–27 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Bell, A.M.T. and Henderson, C.M.B. (1994) Rietveld refinement of the structures of dry-synthesized MFeIIISi2O6 leucites (M=K,Rb, Cs) by synchrotron X-ray powder diffraction. Acta Crystallographica, C50, 1531–1536.

    Google Scholar 

  • Brigatti, M.F., Galli, E., Medici, L. and Poppi, L. (1997) Crystal structure of aluminian lizardite-2H2. American Mineralogist, 82, 931–935.

    Article  Google Scholar 

  • Brunton, G.D., Harris, L.A. and Kopp, O.C. (1972) Crystal structure of rubidium-iron feldspar. American Mineralogist, 57, 1720–1728.

    Google Scholar 

  • Canillo, E., Mazzi, F., Fang, J.H., Robinson, P.D. and Ohya, Y. (1971) The crystal structure of aenigmatite. American Mineralogist, 56, 427–445.

    Google Scholar 

  • Clegg, W. (1981) Faster data collection without loss of precision. An extension of the learnt profile method. Acta Crystallographica, A37, 22–28.

    Article  Google Scholar 

  • Collomb, A., Litsardakis, G., Samaras, D. and Pannetier, J. (1989) Neutron diffraction studies of the crystallographic and magnetic structures of SrZn2/3Mn4/3Fe16O27. Journal of Magnetism and Magnetic Materials, 78, 219–225.

    Article  Google Scholar 

  • de Boer, V., van Santen, J.H. and Verwey, E.J.W. (1950) The electrostatic contribution to the lattice energy of some ordered spinels. Journal of Chemical Physics, 18, 1032–1034.

    Article  Google Scholar 

  • Della Giusta, A., Princivalle, F. and Carbonin, S. (1987) Crystal structure and cation distribution in some natural magnetites. Mineralogy and Petrology, 37, 315–321.

    Article  Google Scholar 

  • Dollase, W.A. and Ross, C.R., II (1993) Crystal structure of the body centered tetragonal tectosilicates. American Mineralogist, 78, 627–632.

    Google Scholar 

  • Donnay, G., Morimoto, N., Takeda, H. and Donnay, J.H.D. (1964) Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Crystallographica, 17, 1369–1373.

    Article  Google Scholar 

  • Dornberger-Schiff, K. and Ďurovič, S. (1975a) OD-interpretation of kaolinite-type structures — I: Symmetry of kaolinite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219–229.

    Article  Google Scholar 

  • Dornberger-Schiff, K. and Ďurovič, S. (1975b) OD-interpretation of kaolinite-type structures — II: The regular polytypes (MDO-polytypes) and their derivation. Clays and Clay Minerals, 23, 231–246.

    Article  Google Scholar 

  • Dowty, E. (1991) ATOMS, a computer program for displaying structures. Shape Software, Kingsport, Tennessee.

    Google Scholar 

  • Ďurovič, S. (1995) Troubles with cronstedtite-1M. Geologica Carpathica — Clays, 4, 88.

    Google Scholar 

  • Ďurovič, S. (1997) Cronstedtite-1M and coexistence of 1M and 3T polytypes. Ceramics-Silikáty, 41, 98–104.

    Google Scholar 

  • Franzini, M. (1969) The A and B mica layers and the crystal structure of sheet silicates. Contributions to Mineralogy and Petrology, 21, 203–224.

    Article  Google Scholar 

  • Geiger, C.A., Henry, D.L., Bailey, S.W. and Maj, J.J. (1983) Crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 31, 97–108.

    Article  Google Scholar 

  • Giusepetti, G. and Tadini, C. (1972) The crystal structure of the 2O brittle mica anandite. Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 169–184.

    Article  Google Scholar 

  • Grey, I.E., Hoskins, B.F. and Madsen, I.C. (1990) A structural study of the incorporation of silica into sodium ferrites, \({\rm{N}}{{\rm{a}}_{1 - x}}\left[ {{\rm{Fe}}_{1 - x}^{3 + }{\rm{S}}{{\rm{i}}_x}{{\rm{O}}_2}} \right]\), x = 0 to 0.20. Journal of Solid State Chemistry, 85, 202–219.

    Article  Google Scholar 

  • Guggenheim, S. and Eggleton, R.A. (1998) Modulated crystal structures of greenalite and caryopilite: A system with longrange, in-plane structural disorder in the tetrahedra sheet. The Canadian Mineralogist, 36, 163–179.

    Google Scholar 

  • Guggenheim, S. and Zhan, W. (1998) Effect of temperature on the structures of lizardite-1T and lizardite-2H1. The Canadian Mineralogist, 36, 1587–1594.

    Google Scholar 

  • Hall, S.H. and Bailey, S.W. (1979) Cation ordering pattern in amesite. Clays and Clay Minerals, 27, 241–247.

    Article  Google Scholar 

  • Hawthorne, F.C. (1978) The crystal chemistry of the amphiboles. VIII. The crystal structure and site chemistry of fluorriebeckite. The Canadian Mineralogist, 16, 187–194.

    Google Scholar 

  • Hazen, R.M., Finger, L.W. and Velde, D. (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica. American Mineralogist, 66, 586–591.

    Google Scholar 

  • Hybler, J. (1997) Determination of crystal structures of minerals affected by twinning. PhD thesis, Charles University, Prague, Czech Republic, 138 pp. (in Czech with an English summary).

    Google Scholar 

  • Hybler, J. (1998) Polytypism of cronstedtite from Chvaletice and Litošice. Ceramics-Silikáty, 42, 130–131.

    Google Scholar 

  • Hybler, J., Petříček, V., Ďurovič, S. and Smrčok, L’. (2000) Refinement of the crystal structure of the cronstedtite-1T. Clays and Clay Minerals, 48, 331–338.

    Article  Google Scholar 

  • International Tables for Crystallography, Volume A (1983) D. Reidel Publishing Company, Dordrecht, The Netherlands.

  • International Tables for X-ray Crystallography, Volume IV (1974) The Kynoch Press, Birmingham, England.

  • Kato, T. (1986) The crystal structure of yeatmanite. Mineralogical Journal (Japan) 13, issue 2, 53–54.

    Article  Google Scholar 

  • Kogure, T., Hybler, J. and Ďurovič, S. (2001) A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates. Clays and Clay Minerals, 49, 310–317.

    Article  Google Scholar 

  • Konnert, J.A., Appleman, D.E., Clark, J.R., Finger, L.W., Kato, T. and Miura, Y. (1976) Crystal structure and cation distribution of hulsite, a tin-iron borate. American Mineralogist, 61, 116–122.

    Google Scholar 

  • Ladd, M.F.C. and Palmer, R.A. (1977) Structure Determination by X-ray Crystallography. Plenum, New York, 393 pp.

    Book  Google Scholar 

  • Mellini, M. (1982) The crystal structure of lizardite-1T: hydrogen bonds and polytypism. American Mineralogist, 67, 587–598.

    Google Scholar 

  • Mellini, M. and Viti, C. (1994) Crystal structure of lizardite-1T from Elba, Italy. American Mineralogist, 79, 1194–1198.

    Google Scholar 

  • Mellini, M. and Zanazzi, P.F. (1987) Crystal structures of lizardite-1T and lizardite-2H1 from Coli, Italy. American Mineralogist, 72, 943–948.

    Google Scholar 

  • Mellini, M., Weiss, Z., Rieder, M. and Drábek, M. (1996) Cs-ferrianite as a possible host of waste cesium. European Journal of Mineralogy, 8, 1265–1271.

    Article  Google Scholar 

  • Mereiter, K. (1978) Die Kristallstruktur des Voltaits, \({{\rm{K}}_2}{\rm{Fe}}_5^{2 + }{\rm{Fe}}_3^{3 + }{\rm{Al}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{12}} \cdot 18\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\)Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 185–202.

    Article  Google Scholar 

  • Mikloš, D. (1975) Symmetry and polytypism of trioctahedral kaolin-type minerals. PhD thesis, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, 144 pp. (in Slovak).

    Google Scholar 

  • Modaressi, A., Gerardin, R., Malaman, B. and Gleitzer, C. (1984) Structure et proprietes d’un germanate de fer de valence mixte Fe4Ge2O9. Etude succinte de GexFe(3−x)O4 (x < 0.5). Journal of Solid State Chemistry, 53, 22–24.

    Article  Google Scholar 

  • Palmer, D.C., Dove, M.T., Ibberson, R.M. and Powell, B.M. (1997) Structural behavior, crystal chemistry and phase transitions in substituted leucite: High resolution neutron powder diffraction studies. American Mineralogist, 82, 16–29.

    Article  Google Scholar 

  • Petříček, V. and Dušek, M. (2000) The crystallographic computing system JANA2000. Institute of Physics, Praha, Czech Republic.

    Google Scholar 

  • Radoslovich, E.W. (1961) Surface symmetry and cell dimension of layer-lattice silicates. Nature, London, 191, 67–68.

    Article  Google Scholar 

  • Redhammer, G.J. (1998) Mössbauer spectroscopy and Rietveld refinement of synthetic ferri-Tschermak’s molecule CaFe3+(Fe3+Si)O6 substituted diopside. European Journal of Mineralogy, 10, 439–452.

    Article  Google Scholar 

  • Renner, B. and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Zeitschrift für Kristallographie, 175, 43–59.

    Google Scholar 

  • Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.

    Article  Google Scholar 

  • Ross, C.R., Armbruster, T. and Canil, D. (1992) Crystal structure refinement of a spinelloid in the system Fe3O4-Fe2SiO4. American Mineralogist, 77, 507–511.

    Google Scholar 

  • Semenova, T.F., Rozhdestvenskaya, I.V. and Frank-Kamenetskii, V.A. (1977) Refinement of the crystal structure of tetraferri phlogopite. Kristallografiya, 22, 1196–1201 (in Russian).

    Google Scholar 

  • Smrčok, L’., Ďurovič, S., Petříček, V. and Weiss, Z. (1994) Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544–551.

    Article  Google Scholar 

  • Steadman, R. (1964) The structure of trioctahedral kaolin-type silicates. Acta Crystallographica, 17, 924–927.

    Article  Google Scholar 

  • Steadman, R. and Nuttall, P.M. (1963) Polymorphism in cronstedtite. Acta Crystallographica, 16, 1–8.

    Article  Google Scholar 

  • Steadman, R. and Nuttall, P.M. (1964) Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404–406.

    Article  Google Scholar 

  • Steinfink, H. (1962) Crystal structure of a trioctahedral mica: Phlogopite. American Mineralogist, 47, 886–889.

    Google Scholar 

  • Tagai, T. and Joswig, W. (1985) Untersuchungen der Kationverteilung im Staurolith durch Neutronenbeugung bei 100 K. Neues Jahbuch für Mineralogie Monatshefte, 97–107.

  • Taylor, H.F.W. (1992) Tobermorite, jennite and cement gel. Zeitschrift für Kristallographie, 202, 41–50.

    Article  Google Scholar 

  • Templeton, D.H. and Templeton, L.K. (1978) Program AGNOST C. University of California at Berkeley.

  • Toraya, H. (1981) Distortion of octahedra and octahedral sheets in 1M micas and the relation to their stability. Zeitschrift für Kristallographie, 157, 173–190.

    Google Scholar 

  • Wechsler, B.A., Lindsley, D.H. and Prewitt, C.T. (1984) The crystal structure and cation distribution in titanomagnetites (Fe3−xTixO4). American Mineralogist, 69, 754–770.

    Google Scholar 

  • Weiss, Z., Rieder, M., Chmielová, M. and Krajíček, J. (1985) Geometry of the octahedral coordination in micas. American Mineralogist, 70, 747–757.

    Google Scholar 

  • Weiss, Z., Rieder, M. and Chmielová, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665–682.

    Article  Google Scholar 

  • Wiewióra, A., Rausell-Colom, J.A. and García-Gonzáles, T. (1991) The structure of amesite from Mount Sobotka: A nonstandard polytype. American Mineralogist, 76, 647–652.

    Google Scholar 

  • Woodland, A.B. and Angel, R.J. (1998) Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe2SiO4 − Fe3O4 and implications for the earth’s mantle. American Mineralogist, 83, 404–408.

    Article  Google Scholar 

  • Yakubovich, O.V., Simonov, M.A., Egorov-Tismenko, Y.K. and Belov, N.V. (1977) The crystal structure of a synthetic variety of alluadite. Doklady Akademii Nauk SSSR, 236, 1123–1126 (in Russian).

    Google Scholar 

  • Zheng, H. and Bailey, S.W. (1997) Refinement of an amesite-2H1 polytype from Potmasburg, South Africa. Clays and Clay Minerals, 45, 301–310.

    Article  Google Scholar 

  • Zhukhlistov, A.P. and Zvyagin, B.B. (1998) Crystal structure of lizardite-1T from electron diffractometry data. Kristallographiya, 43, 1009–10014 (in Russian); also in: Crystallography Reports 43, 950–955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Hybler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hybler, J., Petříček, V., Fábry, J. et al. Refinement of the crystal structure of cronstedtite-2H2. Clays Clay Miner. 50, 601–613 (2002). https://doi.org/10.1346/000986002320679332

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002320679332

Key Words

Navigation