Clays and Clay Minerals

, Volume 66, Issue 5, pp 449–465 | Cite as

Relating the Cation Exchange Properties of the Boom Clay (Belgium) to Mineralogy and Pore-Water Chemistry

  • Lander FrederickxEmail author
  • Miroslav Honty
  • Mieke de Craen
  • Reiner Dohrmann
  • Jan Elsen


The Boom Clay in northern Belgium has been studied intensively over recent decades as a potential host rock in the context of disposal of radioactive waste. One of the parameters of interest is the cation exchange capacity (CEC) as it is related to the sorption potential of radionuclides to the clay host rock. In the past, the CEC was determined using various methods on a limited number of samples, leading to significant variations. To constrain the CEC of the Boom Clay better, a sample set covering the entire stratigraphy was measured using the quick copper(II) triethylenetetramine method. Part of the sample set was also measured using the cobalt(III) hexamine method, as a quality control for the results of the former method. In addition, the exchangeable cation population of the Boom Clay was quantified systematically for the first time and these results were compared to the {tiin situ} pore-water chemistry, indicating a strong coupling between the pore-water composition and the exchangeable sites of clay minerals.

Key Words

Boom Clay Cation Exchange Capacity Clay Mineralogy Pore Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aertsens, M., Wemaere, I., and Wouters, L. (2004) Spatial variability of transport parameters in the Boom Clay. Applied Clay Science, 26, 37–45.CrossRefGoogle Scholar
  2. Aertsens M., Dierckx, A., Put M., Moors H., Janssen K., van Ravestyn L., Van Gompel M., Van Gompel M., and De Cannière P. (2005) Determination of the hydraulic conductivity, ηr and the apparent diffusion coefficient on Ieper clay and Boom Clay cores from the Doel-1 and Doel-2b drillings. Final report to NIRAS/ONDRAF on Tasks 2.71 and 2.73 covering the period 1998–1999, SCK·CEN-R- 3589, SCK·CEN, Mol, Belgium., 285 pp.Google Scholar
  3. Ammann, L., Bergaya, F., and Lagaly, G. (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441–453.CrossRefGoogle Scholar
  4. Bache, B.W. (1976) The measurement of cation exchange capacity of soils. Journal of the Science of Food and Agriculture, 27, 273–280.CrossRefGoogle Scholar
  5. Baeyens, B., Maes, A., Cremers, A., and Henrion, P.N. (1985) In situ physico-chemical characterization of Boom Clay. Radioactive Waste Management and the Nuclear Fuel Cycle, 6, 391–408.Google Scholar
  6. Bastiaens, W., Van Cotthem, A., and Voorspoels, T. (2008) Design and realisation of the PRACLAY experimental gallery. Pp. 233–230 in: Proceedings of the Congrès international de Monaco, October 2008.Google Scholar
  7. Beaucaire, C., Pitsch, H., Toulhoat, P., Motellier, S., and Louvat, D. (2000) Regional fluid characterisation and modelling of water-rock equilibria in the Boom Clay formation and in the Rupelian aquifer at Mol, Belgium. Applied Geochemistry, 15, 667–686.CrossRefGoogle Scholar
  8. Bergaya, F. and Vayer, M. (1997) CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275–280.CrossRefGoogle Scholar
  9. Bradbury, M.H. and Baeyens, B. (1998) A physicochemical characterisation and geochemical modelling approach for determining porewater chemistries in argillaceous rocks. Geochimica et Cosmochimica Acta, 62, 783–795.CrossRefGoogle Scholar
  10. Ciesielski, H., Sterckeman, T., Santerne, M., and Willery, J. (1997) A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomie, 17, 9–16.CrossRefGoogle Scholar
  11. De Craen, M. (2005) Geochemical characterisation of specific Boom Clay intervals. SCK·CEN report R-4080, Mol, Belgium.Google Scholar
  12. De Craen, M. and Mijnendonckx, K. (2017) Boom Clay pore water chemistry around Hades: Reporting of the sampling and analyses performed in 2017. Report 17/MDC/N- 45,SCK-CEN, Mol, Belgium.Google Scholar
  13. De Craen, M., Wang, L., Van Geet, M., and Moors, H. (2004a) Geochemistry of Boom Clay pore water at the Mol site. SCK·CEN scientific report BLG-990. Waste & Disposal Department SCK·CEN (Mol), Belgium).Google Scholar
  14. De Craen, M., Van Geet, M., Honty, M., Weetjens, E., and Sillen, X. (2008) Extent of oxidation in Boom Clay as a result of excavation and ventilation of the Hades URF: Experimental and modelling assessments. Physics and Chemistry of the Earth, 33, S350–S362.CrossRefGoogle Scholar
  15. De Craen, M., Wang, L., and Weetjens, E. (2004b) Natural evidence on the long-term behaviour of trace elements and radionuclides in the Boom Clay. Internal report R-3926, SCK·CEN, Mol, Belgium.Google Scholar
  16. Deniau, I., Devol-Brown, I., Derenne, S., Behar, F., and Largeau, C. (2008) Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories. Science of the Total Environment, 389, 475–485.CrossRefGoogle Scholar
  17. Dohrmann, R. (2006) Cation exchange capacity methodology I: An efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results. Applied Clay Science, 34, 31–37.CrossRefGoogle Scholar
  18. Dohrmann, R. and Kaufhold, S. (2009) Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338–352.CrossRefGoogle Scholar
  19. Dohrmann, R. and Kaufhold, S. (2010) Determination of exchangeable calcium of calcareous and gypsiferous bentonites. Clays and Clay Minerals, 58, 79–88.CrossRefGoogle Scholar
  20. Dohrmann, R., Kaufhold, S., and Lundqvist, B. (2013) The role of clays for safe storage of nuclear waste. Pp. 677–710 in: Handbook of Clay Science (F. Bergaya and G. Lagaly}, editors. Developments in Clay Science, 5, Elsevier, Amsterdam.CrossRefGoogle Scholar
  21. Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., Sellin, P., Svensson, D., and Valter, M. (2012) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-triethylenetetramine method. Clays and Clay Minerals, 60, 162–175.CrossRefGoogle Scholar
  22. Fernandez, A., Melon, A., Sanchez, D., Gaucher, E., Tournassat, C., Altmann, S., Vinsot, A., Maes, N., De Craen, M., Leupin, O., Wersin, P., and Astudillo, J. (2010) Study of different argillaceous formations performed in the context of the FUNMIG project (ENRESA-05/2009), Spain.Google Scholar
  23. Gaines Jr, G.L. and Thomas, H.C. (1953) Adsorption studies on clay minerals. Ii. A formulation of the thermodynamics of exchange adsorption. The Journal of Chemical Physics, 21, 714–718.Google Scholar
  24. Gaucher, É.C., Blanc, P., Bardot, F., Braibant, G., Buschaert, S., Crouzet, C., Gautier, A., Girard, J.-P., Jacquot, E., and Lassin, A. (2006) Modelling the porewater chemistry of the Callovian-Oxfordian formation at a regional scale. Comptes Rendus Geoscience, 338, 917–930.CrossRefGoogle Scholar
  25. Griffault, L., Merceron, T., Mossmann, J., Neerdael, B., Dept Cannière, P., Beaucaire, C., Daumas, S., Bianchi, A., and Christen, R. (1996) Project Archimède-Argile. Acquisition et régulation de la chimie des eaux en milieu argileux pour le projet de stockage de déchets radioactifs en formation géologique. Rapport final, International Workshop, Hydraulic and Hydrochemical characterisation of argillaceous rocks; 1994; Nottingham, UK. OECD Documents, pp. 105-118Google Scholar
  26. Hadi, J., Tournassat, C., and Lerouge, C. (2016) Pitfalls in using the hexaamminecobalt method for cation exchange capacity measurements on clay minerals and clay-rocks: Redox interferences between the cationic dye and the sample. Applied Clay Science, 119, 393–400.CrossRefGoogle Scholar
  27. Honty, M. (2010) CEC of the Boom Clay — a review. SCK·CEN-ER-58, Mol, Belgium, 27 pp.Google Scholar
  28. ISO-23470 (2007) Soil quality — determination of effective cation exchange capacity (cec) and exchangeable cations using a hexamminecobalt trichloride solution. Scholar
  29. Jackson, M.L. (1975) Soil Chemical Analysis — Advanced Course. Second edition. Published by the author, Madison, Wisconsin, USA.Google Scholar
  30. Jacquier, P., Hainos, D., Robinet, J., Herbette, M., Grenut, B., Bouchet, A., and Ferry, C. (2013) The influence of mineral variability of Callovo-Oxfordian clay rocks on radionuclide transfer properties. Applied Clay Science, 83, 129–136.CrossRefGoogle Scholar
  31. Klinkenberg, M., Kaufhold, S., Dohrmann, R., and Siegesmund, S. (2009) Influence of carbonate microfabrics on the failure strength of claystones. Engineering Geology, 107, 42–54.CrossRefGoogle Scholar
  32. Maes, A., Vancluysen, J., and Bruggeman, C. (2003) Influence of oxidation on the cs cation exchange capacity of Boom Clay. Unpublished report of the Catholic University of Leuven, Faculty of Bioscience Engineering, Centre for Surface Chemistry and Catalysis, 16.Google Scholar
  33. Mazurek, M., Alt-Epping, P., Gimi, T., Niklaus, W., Bath, A., and Gimmi, T. (2009) Natural tracer profiles across argillaceous formations: The CLAYTRAC project.Google Scholar
  34. Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., Waber, H.N., Buschaert, S., De Cannière, P., De Craen, M., Gautschi, A., and Savoye, S. (2011) Natural tracer profiles across argillaceous formations. Applied Geochemistry, 26, 1035–1064.CrossRefGoogle Scholar
  35. Meier, L.P. and Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386–388.CrossRefGoogle Scholar
  36. Pearson, F., Arcos, D., Bath, A., Boisson, J., Fernández, A., Gäbler, H., Gaucher, E., Gautschi, A., Griffault, L., and Hernńn, P. (2002) Geochemical program of the Mont Terri project: Summary of results and conclusions. Proceedings of the 1st International. Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France.Google Scholar
  37. Snellings, R., Machiels, L., Mertens, G., and Elsen, J. (2010) Rietveld refinement strategy for quantitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geologica Belgica, 183–196.Google Scholar
  38. Środoń, J. (2009) Quantification of illite and smectite and their layer charges in sandstones and shales from shallow burial depth. Clay Minerals, 44, 421–434.CrossRefGoogle Scholar
  39. Środoń, J. and McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements. Clays and Clay Minerals, 56, 155–174.CrossRefGoogle Scholar
  40. Zeelmaekers, E., Honty, M., Derkowski, A., Środoń, J., De Craen, M., Vandenberghe, N., Adriaens, R., Ufer, K., and Wouters, L. (2015) Qualitative and quantitative mineralogical composition of the Rupelian Boom Clay in Belgium. Clay Minerals, 50, 249–272.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2018

Authors and Affiliations

  • Lander Frederickx
    • 1
    • 2
    Email author
  • Miroslav Honty
    • 1
  • Mieke de Craen
    • 1
  • Reiner Dohrmann
    • 3
  • Jan Elsen
    • 2
  1. 1.Belgian Nuclear Research Centre (SCK·CEN)MolBelgium
  2. 2.Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
  3. 3.BGR, Bundesanstalt für Geowissenschaften und RohstoffeHannoverGermany

Personalised recommendations