Clays and Clay Minerals

, Volume 61, Issue 4, pp 277–289 | Cite as

A Multi-Technique Characterization of Cronstedtite Synthesized by Iron-Clay Interaction in a Step-By-Step Cooling Procedure

  • I. PignatelliEmail author
  • E. Mugnaioli
  • J. Hybler
  • R. Mosser-Ruck
  • M. Cathelineau
  • N. Michau


The cooling of steel containers in radioactive-waste storage was simulated in a step-by-step experiment from 90 to 40ºC. Among newly formed clay minerals observed in run products, cronstedtite was identified by a number of analytical techniques (powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy). Cronstedtite has not previously been recognized to be so abundant and so well crystallized in an iron—clay interaction experiment. The supersaturation of experimental solutions with respect to cronstedtite was due to the availability of Fe and Si in solution, as a result of the dissolution of iron metal powder, quartz, and minor amounts of other silicates. Cronstedtite crystals are characterized by various morphologies: pyramidal (truncated or not) with a triangular base and conical with a rounded or hexagonal cross-section. The pyramidal crystals occur more frequently and their polytypes (2M1, 1M, 3T) were identified by selected area electron diffraction patterns and by automated diffraction tomography. Cronstedtite is stable within the 90-60ºC temperature range. At temperatures of ⩽ 50ºC, the cronstedite crystals showed evidence of alteration.

Key Words

Cronstedtite Experimental Iron-clay Interaction MDO Polytypes Radioactive Waste Storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S.W. (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays and Clay Minerals, 17, 355–371.Google Scholar
  2. Bailey, S.W. (1988) Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Minerals, 23, 237–247.Google Scholar
  3. Barber, D.J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochimica et Cosmochimica Acta, 45, 945–970.Google Scholar
  4. Brindley, G.W. (1982) Chemical compositions of berthierines—A review. Clays and Clay Minerals, 30, 153–155.Google Scholar
  5. Browning, L.B., McSween, H.Y. Jr., and Zolensky, M.E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 2621–2633.Google Scholar
  6. Burbine, T.H. and Burns, R.G. (1994) Questions concerning the oxidation of the ferrous iron in carbonaceous chondrites. Lunar Planetary Science, XXV, 199–3200.Google Scholar
  7. de Combarieu, G., Schlegel, M.L., Neff, D., Foy, E., Vantelon, D., Barboux, P., and Gin, S. (2011) Glass-iron-clay interactions in a radioactive waste geological disposal: an integrated laboratory-scale experiment. Applied Geochemistry, 26, 65–79.Google Scholar
  8. Dornberger-Schiff, K. (1956) On Order-Disorder Structures (OD-Structures). Acta Crystallographica, 9, 593–601.Google Scholar
  9. Dornberger-Schiff, K. (1964) Grundzüge einer Theorie von OD-Strukturen aus Schichten. Abh. dtsch. Akad Wiss Berlin, Kl. f. Chem., 3, 107 pp.Google Scholar
  10. Dornberger-Schiff, K. (1966) Lehrgang üer OD-Strukturen. Akademine-Verlag, Berlin, 135 pp.Google Scholar
  11. Dornberger-Schiff, K. and Ďurovič, S. (1975) OD-interpretation of kaolinite-type structure—I: symmetry of kaolinite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219–229.Google Scholar
  12. Dornberger-Schiff, K. (1979) OD structures—a game and a bit more. Kristall Und Technik, 14, 1027–1045.Google Scholar
  13. Dunn, D.A. (1980) Revised techniques for quantitative calcium carbonate analysis using the “Karbonat-Bombe,” and comparisons to other quantitative carbonate analysis methods. Journal of Sedimentary Research, 50, 631–636.Google Scholar
  14. Ďurovič, S. (1981) OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortschritte der Mineralogie, 59, 191–226.Google Scholar
  15. Ďurovič, S. (1997) Cronstedtite-1M and co-existence of 1M and 3T polytypes. Ceramics—Silikáty, 41, 98–104.Google Scholar
  16. Dyl, K.A., Manning, CE., and Young, E.D. (2010) The implication of the cronstedite in water-rich planetesimals and asteroids. Astrobiology Science Conference 2010, League City, Texas, USA.Google Scholar
  17. Frondel, C. (1962) Polytypism in cronstedtite. American Mineralogist, 47, 781–783.Google Scholar
  18. Gaucher, E., Robelin, C., Matray, J.M., Négrel, G., Gros, Y., Heitz, J.F., Vinsot, A., Rebours, H., Cassagnabère, A., and Bouchet, A. (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Physics and Chemistry of the Earth, 29, 55–77.Google Scholar
  19. Geiger, CA., Henry, D.L., Bailey, S.W., and Maj, J.J. (1983) Crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 31, 97–108.Google Scholar
  20. Gole, M.J. (1980a) Low-temperature retrograde minerals in metamorphosed Archean banded iron-formations, Western Australia. The Canadian Mineralogist, 18, 205–214.Google Scholar
  21. Gole, M.J. (1980b) Mineralogy and petrology of very-low metamorphic grade Archean banded iron-formations, Weld Range, Western Australia. American Mineralogist, 65, 8–25.Google Scholar
  22. Guggenheim, S., Bailey, S.W., Eggleton, RA., and Wilkes, P. (1982) Structural aspects of greenalite and related minerals. The Canadian Mineralogist, 20, 1–18.Google Scholar
  23. Hendricks, S.B. (1939) Random structures of layer minerals as illustrated by cronstedtite (2FeO·Fe2O3·SiO2·2H2O). Possible iron content of kaolin. American Mineralogist, 24, 529–539.Google Scholar
  24. Hybler, J., Petřiček, V., Ďurovič, S., and Smrčok, L. (2000) Refinement of the crystal structure of cronstedtite-1T. Clays and Clay Minerals, 48, 331–338.Google Scholar
  25. Hybler, J., Petřiček, V., Fabry, J., and Ďurovič, S. (2002) Refinement of the crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 50, 601–613.Google Scholar
  26. Hybler, J., Ďurovič, S., and Kogure, T. (2008) Polytypism in cronstedtite. Acta Crystallographica, A64, C498–C499.Google Scholar
  27. Jodin-Caumon, M.C., Mosser-Ruck, R., Rousset, D., Randi, A., Cathelineau, M., and Michau, N. (2010) Effect of a thermal gradient on iron—clay interactions. Clays and Clay Minerals, 58, 667–681.Google Scholar
  28. Jodin-Caumon, M.C., Mosser-Ruck, R., Randi, A., Pierron, O., Cathelineau, M., and Michau, N. (2012) Mineralogical evolutions of a claystone after reaction with iron under thermal gradient. Clays and Clay Minerals, 60, 5, 443–455.Google Scholar
  29. Johnson, L., Anderson, G., and Parkhurst, D. (2000) Database from ‘’ Prepared at Lawrence Livermore National Laboratory, California, USA (Revision: 1.11).Google Scholar
  30. Kogure, T., Hybler, J., and Ďurovič, S. (2001) A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates. Clays and Clay Minerals, 49, 310–317.Google Scholar
  31. Kogure, T., Hybler, J., and Yoshida, H. (2002) Coexistence of two polytypic groups in cronstedtite from Lostwithiel England. Clays and Clay Minerals, 50, 504–513.Google Scholar
  32. Kolb, U., Gorelik, T., Kübel, C., and Otten, M.T. (2007) Towards automated diffraction tomography: Part I—Data acquisition. Ultramiscoscopy, 107, 507–513.Google Scholar
  33. Kolb, U., Gorelik, T., and Otten, M.T. (2008) Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy, 108, 763–772.Google Scholar
  34. Lanson, B., Lantenois, S., Van Aken, P.A., Bauer, A., and Plançon, A. (2012) Experimental investigation of smectite interaction with metal iron at 80ºC: structural characterization of newly formed Fe-rich phyllosilicates. American Mineralogist, 97, 864–871.Google Scholar
  35. Lantenois, S. (2003) Réactivié fer metal/smectites en milieu hydraté à 80ºC. PhD thesis, Université d’Orleans, Orleans, France, 220 pp.Google Scholar
  36. Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M., and Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597–612.Google Scholar
  37. Lauretta, D.S., Hua, X., and Buseck, P.R. (2000) Mineralogy of fine-grained rims in the ALH 81002 CM chondrite. Geochimica et Cosmochimica Acta, 64, 3263–3273.Google Scholar
  38. Ledésert, B., Hébert, R., Grall, C., Genter, A., Dezayes, C., Bartier, D., and Gérard, A. (2009) Calcimetry as a useful tool for a better knowledge of flow pathways in the Soultzsous-Forðs Enhanced Geothermal System. Journal of Volcanology and Geothermal Research, 181, 106–114.Google Scholar
  39. López García, JA., Manteca, J.I., Prieto, A.C., and Calvo, B. (1992) Primera aparición en España de cronstedtita. Caracterización estructural. Boletín de la Sociedad Española de Mineralogía, 15-1, 21–25.Google Scholar
  40. McAlister, JA. and Kettler, R.M. (2008) Metastable equilibria among dicarboxylic acids and the oxidation state during acqueous alteration on the CM2 chondrite parent body. Geochimica et Cosmochimica Acta, 72, 233–241.Google Scholar
  41. Miyahara, M., Uehara, S., Ohtani, E., Nagase T., Nishijima, M., Vashaei, Z., and Kitagawa, R. (2008) The anatomy of altered chondrules and FGRs covering hem in a CM chondrite by FIB-TEM-STEM. Lunar Planetary Science, XXXIX, 199–200.Google Scholar
  42. Mosser-Ruck, R., Cathelineau, M., Guillaume, D., and Charpentier, D. (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280–291.Google Scholar
  43. Mugnaioli, E., Gorelik, T., and Kolb, U. (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy, 109, 758–765.Google Scholar
  44. Müller, W.F., Kurat, G., and Kracher, A. (1979) Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 293–304.Google Scholar
  45. Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s guide to PHREEQC (Version 2). A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 pp.Google Scholar
  46. Perronnet, M., Villiéras, F., Jullien, M., Razafitianamaharavo, A., Raynal, J., and Bonnin, D. (2007) Towards a link between the energetic heterogeneities of the edge of smectites and their stability in the context of metallic corrosion. Geochimica et Cosmochimica Acta, 71, 1463–1479.Google Scholar
  47. Perronnet, M., Jullien, M., Villiéras, F., Raynal, J., Bonnin, D., and Bruno, G. (2008) Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80ºC. Applied Clay Science, 38, 187–202.Google Scholar
  48. Pierron, O. (2011) Interactions eau-fer-argilite: rôle des paramètres Liquide/Roche, Fer/Argilite, Température sur la nature des phases minérales. PhD thesis, Université Henri Poincaré, Nancy, 226 pp.Google Scholar
  49. Rivard, C. (2011) Contribution à l’étude de la stabilité des minéraux constitutifs de l’argilite du Callovo-Oxfordien en présence de fer à 90ºC, PhD thesis, Institut National Polytechnique de Lorraine, Nancy, France, 338 pp.Google Scholar
  50. Rivard, C., Pelletier, M., Michau, N., Razafitianamaharavo, A., Bihannic, I., Abdelmoula, M., Ghanbaja, J., and Villiéras, F. (2013) Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90ºC under anoxic and oxic conditions. American Mineralogist, 98, 163–180.Google Scholar
  51. Rousset, D. (2002) Etude de la fraction argileuse de séquence sédimentaires de la Meuse et du Gard. Reconstruction de l’histoire diagénetique et des caractéristiques physicochimiques des cibles. PhD thesis, Université Louis Pasteur, Strasbourg, France, 269 pp.Google Scholar
  52. Schlegel, M.L., Bataillon, C., Benhamida, K., Blanc, C., Menut, D., and Lacour, J. (2008) Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: a microscopic-scale study. Applied Geochemistry, 23, 2619–2633.Google Scholar
  53. Schulte, M. and Schock, E. (2004) Coupled organic synthesis and mineral alteration on the meterorite parent bodies. Meteoritic and Planetary Science, 39, 1577–1590.Google Scholar
  54. Smrcok, L. and Weiss, Z. (1993) DIFK91: a program for the modelling of powder diffraction patterns on a PC. Journal of Applied Crystallography, 26, 140–141.Google Scholar
  55. Smrcok, L., Ďurovič, S., Petříček, V., and Weiss, Z. (1994) Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544–551.Google Scholar
  56. Steadman, R. and Nuttall, P.M. (1963) Polymorphism in cronstedtite. Acta Crystallographica, 16, 1–8.Google Scholar
  57. Steadman, R. and Nuttall, P.M. (1964) Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404–406.Google Scholar
  58. Sunagawa, I. (2005) Crystals. Growth, Morphology and Perfection. Cambridge University Press, Cambridge, UK.Google Scholar
  59. Wilson, J., Cressey G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., and Shibata, M. (2006) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323–336.Google Scholar
  60. Zega, T.J. and Buseck, P.R. (2003) Fine-grained-rim mineralogy of the Cold Bokkeveld CM chondrite. Geochimica et Cosmochimica Acta, 67, 1711–1721.Google Scholar

Copyright information

© The Clay Minerals Society 2013

Authors and Affiliations

  • I. Pignatelli
    • 1
    Email author
  • E. Mugnaioli
    • 2
  • J. Hybler
    • 3
  • R. Mosser-Ruck
    • 1
  • M. Cathelineau
    • 1
  • N. Michau
    • 4
  1. 1.GeoRessources UMR-CNRS 7359Université de Lorraine, Faculté des sciences et technologiesVandoeuvre-lès-NancyFrance
  2. 2.Institut für Physikalische ChemieJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Institute of PhysicsAcademy of Science of Czech RepublicPrague 6Czech Republic
  4. 4.Agence nationale pour la gestion des déchets radioactifs (ANDRA), Direction Recherche et Développement/Service Colis et MatériauxParc de la Croix BlancheChâtenay-Malabry CedexFrance

Personalised recommendations