Clays and Clay Minerals

, Volume 59, Issue 3, pp 328–335 | Cite as

Effects of Gel Parameters on the Synthesis and Characteristics of W-Type Zeolite Nanoparticles

  • Hojjatollah Maghsoodloorad
  • Seyed Mojtaba Mirfendereski
  • Toraj MohammadiEmail author
  • Afshin Pak


The objectives of this study were to investigate the effects of chemical parameters on the characterizationof W-type zeolite crystals and their intergrowths with other types of zeolites. The crystal size and purity ofW-type zeolites are affected significantly by the gel composition with respect to the molar ratios of SiO2/Al2O3 (aluminosilicate module, α), H2O/K2O (alkainity, β), and water content (H2O/SiO2, γ). The effects of these gel parameters ont he synthesis and characterizationof W-type zeolite were investigated.

Crystalline W-type zeolite of high purity was synthesized using a gel with a molar ratio of Al2O3:6.4SiO2:5.6K2O:164.6H2O at T = 165°C for a period of 72 h. The effect of excess K2O/SiO2 ratio ina mono-cation (K)-SiO2-Al2O3 gel-composition system on the nanoparticle size and purity of the product was also investigated. Experiments were carried out using the following levels of alkalinity: 21.4, 29.4, and 51.9; aluminosilicate module: 5.0, 6.4, and 10.0; water content: 16.5, 25.7, and 32.9; and excess K2O/SiO2 ratio: from 0.65 to 3.33. The results showed that by increasing the aluminosilicate module at high K2O/SiO2 ratio, the crystallinity and crystal size of the zeolite synthesized increased, while at low alkalinity, the crystallinity and crystal size decreased. Decreasing alkalinity at low aluminosilicate module increased the crystallinity and decreased the crystal size, while at high aluminosilicate module, both decreased. Finally, by increasing the water content at all aluminosilicate module and alkalinity values, the crystallinity and crystal size of the W-type zeolite increased. Excess K2O/SiO2 ratio was the key factor that should be adjusted int he range 0.7–1.0 for synthesis of pure crystals of W-type zeolite.

Key Words

Crystallinity Gel Parameters Nanoparticle Size Optimum Gel Compositions W-type Zeolite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerlocher, Ch., Meier, W.M., and Olson, D.H. (2001) Atlas of Zeolite Framework Types. Elsevier, New York.Google Scholar
  2. Barrett, P.A., Valencia, S., and Camblor, M.A. (1998) Synthesis of a merlinoite-type zeolite with an enhanced Si/Al ratio via pore filling with tetraethylammonium cations. Journal of Material Chemistrys, 82, 263–2268.Google Scholar
  3. Bieniok, A., Bornholdt, K., Brendel, U., and Baur, W.H. (1996) Synthesis and crystal structure of Zeolite W, resembling the mineral merlinoite. Journal of Materials Chemistry, 6, 271–275.CrossRefGoogle Scholar
  4. Cejka, J., Bekkum, H.V., Corma, A., and Schüth, F. (2007) Introduction to Zeolite Science and Practice. Elsevier, New York.Google Scholar
  5. Donahoe, R.J. and Ltou, J.G. (1984) Synthesis and characterizationof zeolites int he system Na2O-K2O-A12O3-SiO2-H2O. Clays and Clay Minerals, 32, 433–443.CrossRefGoogle Scholar
  6. Galli, E., Gottardi, G., and Pongiluppi, D. (1979) The crystal structure of the zeolite merlinoite. Neues Jahrbuch für Mineralogie, Monatshefte, 1–9.Google Scholar
  7. Gutiérrez, M., Escudey, M., Escrig, J., Denardin, J.C., Altbir, D., Fabris, J.D., Cavalcante, L.C.D., and García-González M.T. (2010) Preparationan d characterizationof magnetic composites based ona natural zeolite. Clays and Clay Minerals, 58, 589–595.CrossRefGoogle Scholar
  8. Hasegawa, Y., Nagase, T., Kiyozumi, Y., and Mizukami, F. (2010) Preparation, characterization, and dehydration performance of MER-type zeolite membranes. Separation and Purification Technology, 73, 25–31.CrossRefGoogle Scholar
  9. Kawano, M. and Tomita, K. (1997) Experimental study on the formationof zeolites from obsidianb y interactionwit h NaOH and KOH solutions at 150 and 200°C. Clays and Clay Minerals, 45, 365–377.CrossRefGoogle Scholar
  10. Kim, S.H., Kim, S.D., Kim, Y.C., Kim, Ch.S., and Hong, S.B. (2001) Synthesis and characterization of Ga-substituted MER-type zeol ites. Microporous and Mesoporous Materials, 42, 121–129.CrossRefGoogle Scholar
  11. Kril, C.E. and Birringer, R. (1998) Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philosophical Magazine A, 77, 621–540.CrossRefGoogle Scholar
  12. Lee, D.G., Kim J.H., and Lee, C.H. (2011) Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-Zeolite bed. Separation and Purification Technology, 77, 312–324.CrossRefGoogle Scholar
  13. Milton, R.M. (1961) Crystallization zeolite. US Patent 3012853.Google Scholar
  14. Mimura, H., Yokota, K., Akiba, K., and Onodera, Y. (2001) Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion. Journal of Nuclear Science and Technology, 38, 766–772.CrossRefGoogle Scholar
  15. Nagase, T., Kiyozumi, Y., Nemoto, Y., Hirano, N., Hasegawa, Y., Ikeda, T., Inoue, T., Nishide, T., and Mizukami, F. (2009) Aneffect of the seed species on the PV performance of the secondary synthesized MER zeolite membranes. Microporous and Mesoporous Materials, 126, 107–114.CrossRefGoogle Scholar
  16. Passaglia, E., Pongiluppi, D., and Rinaldi, R. (1977) Merlinoite, a new mineral of the zeolite group. Neues Jahrbuch für Mineralogie, Monatshefte, 355–364.Google Scholar
  17. Quirin, J.C., Yuen, L.T., and Zones, S.I. (1997) Merlinoite synthesis studies with and without organocations. Journal of Materials Chemistry, 7, 2489–2494.CrossRefGoogle Scholar
  18. Robson, H. (2001) Verified Syntheses of Zeolitic Materials. Elsevier, New York.Google Scholar
  19. Sand, L.B. (1978) Synthetic Zeolite. US Patent 4093699.Google Scholar
  20. Seo, Y.H., Prasetyanto, E.A., Jiang, N., Oh, S.M., and Park, S.E. (2010) Catalytic dehydration of methanol over synthetic Zeolite W. Microporous and Mesoporous Materials, 128, 108–114.CrossRefGoogle Scholar
  21. Skofteland, B.M., Ellestad, O.H., and Lillerud, K.P. (2001) Potassium merlinoite: crystallization, structural and thermal properties. Microporous and Mesoporous Materials, 43, 61–71.CrossRefGoogle Scholar
  22. Tarlan-Yel, E., and Önen, V. (2010) Performance of natural zeolite and sepiolite in the removal of free cyanide and copper-complexed cyanide ([Cu(CN)3]2−). Clays and Clay Minerals, 58, 110–119.CrossRefGoogle Scholar
  23. Treacy, M.M.J. and Higgins, J.B. (2007) Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, New York.Google Scholar

Copyright information

© The Clay Minerals Society 2011

Authors and Affiliations

  • Hojjatollah Maghsoodloorad
    • 1
  • Seyed Mojtaba Mirfendereski
    • 1
  • Toraj Mohammadi
    • 1
    Email author
  • Afshin Pak
    • 1
  1. 1.Research Centre for Membrane Separation Processes, Faculty of Chemical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations