Advertisement

Clays and Clay Minerals

, Volume 59, Issue 3, pp 250–276 | Cite as

Mineralogical and Geochemical Characteristics and Genesis of Hydrothermal Kaolinite Deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey

  • Selahattin KadırEmail author
  • Hande Erman
  • Hülya Erkoyun
Article

Abstract

The Kütahya kaolinite deposits are the most important source of raw materials for the ceramics industry in Turkey. To date, no detailed mineralogical or geochemical characterizations of these materials have been carried out; the present study aims to fill that gap. The Kütahya kaolinite deposits formed by alteration of dacite and andesite tuffs related to Neogene volcanism whichwas associated withe xtensional tectonics. The kaolinite deposits contain silica and Fe- and Ti-bearing phases (pyrite, goethite, and rutile) in vertical and subvertical veins that diminish and then disappear upward. Mineralogical zonation outward from the main kaolinite deposit is as follows: kaolinite ± smectite + illite + opal-CT + feldspar; feldspar + kaolinite + quartz + smectite + illite; quartz + feldspar + volcanic glass. The veins and mineral distributions demonstrate that hydrothermal alteration was the main process in the development of the kaolinite deposits of the area. The very sharp, intense, diagnostic basal reflections at 7.2 and 3.57 Å, as well as non-basal reflections, well defined pseudohexagonal to hexagonal crystallinity with regular outlines, ideal differential thermal analysis-thermal gravimetric curves, and ideal, sharp, infrared spectral bands indicate well crystallized kaolinite. Micromorphologically, the development of kaolinite plates at the edges of altered feldspar and devitrified volcanic glass indicates an authigenic origin. Lateral increase in (SiO2+Fe2O3+MgO+Na2O+CaO+K2O)/(Al2O3+TiO2) from the center of the kaolinite deposit outward also indicates hydrothermal zonation. Enrichment of Sr in altered and partially altered rocks relative to freshvolca nic-rock samples demonstrates retention of Sr and depletion of Rb, Ba, Ca, and K during hydrothermal alteration of sanidine and plagioclase within the volcanic units. In addition, depletion of heavy rare earth elements (HREE) relative to light rare earth elements (LREE) in the kaolinized materials may be attributed to the alteration of hornblende. The negative Eu anomaly suggests the alteration of feldspar by hydrothermal fluids. The isotopic data from kaolinite and smectite indicate that hydrothermalalteration processes developed at 119.1–186.9°C and 61.8–84.5°C, respectively. Thus, the kaolinite deposits formed by hydrothermal alteration of volcanic glass, feldspar, and hornblende by a dissolutionprecipitation mechanism which operated under acidic conditions within Neogene dacite, andesite, and tuffs.

Key Words

Geochemistry Hydrothermal Alteration Kütahya Kaolinite Mineralogy Micromorphology Neogene Turkey Volcanite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arslan, M., Kadir, S., Abdioğlu, E., and Kolaylı, H. (2006) Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. Clay Minerals, 41, 597–617.CrossRefGoogle Scholar
  2. Akdeniz, N. and Konak, N. (1979a) Simav-Emet-Tavşanlı-Dursunbey-Demirci yörelerinin jeolojisi. MTA Report No. 6547 (in Turkish, Unpublished).Google Scholar
  3. Akdeniz, N. and Konak, N. (1979b) Menderes masifinin Simav dolayındaki kaya birimleri ve metabazik, metaultramafik kayaların konumu. Türkiye Jeoloji Kurumu Bülteni, 22, 175–183.Google Scholar
  4. Balan, E., Saitta, A.M., Mauri, F., and Calas, G. (2001) First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321–1330.CrossRefGoogle Scholar
  5. Balan, E., Lazzeri, M., Saitta, A.M., Allard, T., Fuchs, Y., and Mauri, F. (2005) First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite. American Mineralogist, 90, 50–60.CrossRefGoogle Scholar
  6. Benco, L., Tunega, D., Hafner, J., and Lischka, H. (2001) Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study. American Mineralogist, 86, 1057–1065.CrossRefGoogle Scholar
  7. Bobos, I., Duplay, J., Rocha, J., and Gomes, C. (2001) Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596–607.CrossRefGoogle Scholar
  8. Braide, S.P. and Huff, W.D. (1986) Clay mineral variation in Tertiary sediments from the eastern Flank of the Niger Delta. Clay Minerals, 21, 211–224.CrossRefGoogle Scholar
  9. Brindley, G.W. (1980) Quantitative X-ray analysis of clays. Pp. 411–438 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
  10. Burçak, M., Sevim, F., and Hacisalihoglu, O. (2007) Discovering a new buried geothermal field found using geological-geophysical and geochemical methods in Uchbash-Shaphane, Kutahya western Anatolia, Turkey. Thirty-Second Workshopon Geothermal Reservoir Engineering, Proceedings, Stanford University, California, SGP-TR-183, pp. 2–3.Google Scholar
  11. Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., Bowers, T.S., Edmond, J.M., Lawrence, J.R., Casey, J.F., Thompson, G., Humphris, S., Rona, P., and Karson, J.A. (1988) Chemistry of hot springs on the Mid-Atlantic ridge: TAG and MARK Sites. Nature, 335, 514–519.CrossRefGoogle Scholar
  12. Churchman, G.J. and Gilkes, R.J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Minerals, 24, 579–590.CrossRefGoogle Scholar
  13. Çiftçi, N.B. and Bozkurt, E. (2009) Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216, 49–79.CrossRefGoogle Scholar
  14. Clayton, R.N. and Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.CrossRefGoogle Scholar
  15. Çoban, F. (2001) Çayırlık Tepe perlitinin (Başren-Kütahya) bentonite alterasyonu sırasında majör, eser ve nadir toprak elementlerinin mobilizasyonu. 10th Ulusal Kil Sempozyumu, 282–304.Google Scholar
  16. Ece, I. and Yüce, A.E. (1999) Endüstriyel mineraller envanteri, Yurt Madenciliğini Geliştirme Vakfı. Mart Matbaacılık Sanatları Ltd. Şti., pp. 77–83.Google Scholar
  17. Erhenberg, S.N. (1991) Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250–269.CrossRefGoogle Scholar
  18. Ercan, T., Dinçel, A., Metin, S., Türkecan, A., and Günay, A. (1978) Uşak yõresindeki Neojen havzalarının jeolojisi (Geology of the Neogene basins in Uşak region). Bulletin of the Geological Society of Turkey, 21, 97–106.Google Scholar
  19. Ercan, T., Günay, E., and Savaşçın, M.Y. (1981-1982) Simav ve çevresindeki Senozoyik yaşlı volkanizmanın bölgesel yorumlanması. MTA Dergisi, 97/98, 86–101.Google Scholar
  20. Farmer, V.C. (1974) The layer silicates. Pp. 331–364 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
  21. Faure, G. (1986) Principles of Isotope Geology, 2nd edition. John Wiley and Sons, New York, 589 pp.Google Scholar
  22. Felhi, M., Tlili, A., Gaied, M.E., and Montacer, M. (2008) Mineralogical study of kaolinitic clays from Sidi El Bader in the far North of Tunisia. Applied Clay Science, 39, 208–217.CrossRefGoogle Scholar
  23. Fulignati, P., Gioncada, A., and Sbrana, A. (1999) Rare earth element (REE) behaviour in alteration facies of the active magmatic—hydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 88, 325–342.CrossRefGoogle Scholar
  24. Gilg, H.A., Weber, B., Kasbohm, J., and Frei, R. (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitź kaolin deposits, Saxony, Germany. Clay Minerals, 38, 95–112.CrossRefGoogle Scholar
  25. Helvacı, C. (1984) Occurence of rare borate minerals: Veatchite-A, tunellite, teruggite and cahnite in the Emet borate deposits, Turkey. Mineralium Deposita, 19, 217–226.CrossRefGoogle Scholar
  26. Huang, W.H. (1974) Stabilities of kaolinite and halloysite in relation to weathering of feldspar and nepheline in aqueous solution. American Mineralogist, 59, 365–371.Google Scholar
  27. Işkı, I., Uz, V., and Alver, Z. (2001) Çayca yöresi (Kütahya) tüflerinin karakterizasyonu ve seramik endüstrisinde kullanım olanakları. 10th Ulusal Kil Sempozyumu, pp. 480–492.Google Scholar
  28. Inoue, A. (1995) Formation of Clay Minerals in Hydrothermal Environments. Pp. 268–329 in: Origin and Mineralogy of Clays (B. Velde, editor). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  29. Jepson, W.B. and Rowse, J.B. (1975) The composition of kaolinite; an electron microscope microprobe study. Clays and Clay Minerals, 23, 310–317.CrossRefGoogle Scholar
  30. Johnston, C.T., Agnew, S.F., and Bish, D.L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, 38, 573–583.CrossRefGoogle Scholar
  31. Kadir, S. and Karakaş, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch für Mineralogie, Abhandlungen, 177, 113–132.Google Scholar
  32. Kadir, S. and Akbulut, A. (2009) Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89–112.CrossRefGoogle Scholar
  33. Kadir, S. and Kart, F. (2009) Occurrence and origin of the Söğüt kaolinite deposits in the Paleozoic Saricakaya granitegranodiorite complexes and overlying Neogene sediments (Bilecik, Northwestern Turkey). Clays and Clay Minerals, 57, 311–329.CrossRefGoogle Scholar
  34. Karakaya, N. (2009) REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence. Journal of Geochemical Exploration, 101, 185–208.CrossRefGoogle Scholar
  35. Konak, N. (2007) 1/500,000 scale geological mapof Turkey - Izmir. General Directorate of Mineral Researchand Exploration of Turkey.Google Scholar
  36. Kunze, G.W. and Dixon, J.B. (1986) Pretreatment for mineralogical analysis. Pp. 91–99 in: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods (A. Klute, editor). Second edition, Madison, Wisconsin, USA.Google Scholar
  37. Lavery, N.G. (1985) Quantifying chemical changes in hydrothermally altered volcanic sequences — silica enrichment as a guide to the Crandon massive sulfide deposit, Wisconsin, USA. Journal of Geochemical Exploration, 24, 1–27.CrossRefGoogle Scholar
  38. MacKenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Monograph 3, Mineralogical Society, London, 456 pp.Google Scholar
  39. MacLean, W.H. and Kranidiotis, P. (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec. Economic Geology, 2, 951–962.CrossRefGoogle Scholar
  40. Madejová, J., Kečk, K., Pálková, H., and Komadel, P. (2002) Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37, 377–388.CrossRefGoogle Scholar
  41. Meunier, A. (2005) Clays. Springer-Verlag, Berlin, Heidleberg, 472 pp.Google Scholar
  42. Meunier, A. and Velde, B. (2004) Illite: Origin, Evolution and Metamorphism. Springer-Verlag, Berlin, Heidelberg, New York, 286 pp.CrossRefGoogle Scholar
  43. Mongelli, G. (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 69–79.CrossRefGoogle Scholar
  44. Moore, D.M. and Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332 pp.Google Scholar
  45. Mutlu, H. and Güleç, N. (1998) Hydrogeochemical outline of thermal waters and geothermometry application in Anatolia (Turkey). Journal of Volcanology and Geothermal Research, 85, 495–515.CrossRefGoogle Scholar
  46. Mutlu, H., Sarıiz, K., and Kadir, S. (2005) Geochemistry and origin of the Şaphane alunite deposit, Western Anatolia, Turkey. Ore Geology Reviews, 26, 39–50.CrossRefGoogle Scholar
  47. Nesbitt, H.W. and Markovics, G. (1997) Weathering of granidioritic crust, long-term storage of elements in weathering profiles and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61, 1653–1670.CrossRefGoogle Scholar
  48. Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J., and Martin, F. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125–140.CrossRefGoogle Scholar
  49. Okut, M., Demirhan, M., and Köse, Z. (1978) Kütahya ili Emet - Simav ilçeleri kaolen zuhurları ve dolaylarının jeoloji raporu. MTA Report No. 6309 (in Turkish, Unpublished).Google Scholar
  50. Özcan, A., Göncüoğlu, M.C., Turan, N., Uysal, Ş., Şentürk, K., and Işık, A. (1988) Late Paleozoik evolution of the Kütahya- Bolkardağı belt. METU Journal of Pure and Applied Sciences, 21, 211–220.Google Scholar
  51. Parry, W.T., Ballantyne, J.M., and Jacobs, D.C. (1984) Geochemistry of hydrothermal sericite from Roosevelt Hot Springs and the Tintic and Santa Rita porphyry copper systems. Economic Geology, 79, 72–86.CrossRefGoogle Scholar
  52. Paterson, E. and Swaffield, R. (1987) Thermal analysis. Pp. 99–132 in: A Handbook of Determinative Methods in Clay Mineralogy (M.J. Wilson, editor). Blackie and Sons Limited, Glasgow, UK, 308 pp.Google Scholar
  53. Pissaridges, A., Stewart, J.W.B., and Rennie, D.A. (1968) Influence of cation saturation of phosphorous adsorption by selected clay minerals. Canadian Journal of Soil Science, 48, 151–157.CrossRefGoogle Scholar
  54. Ringwood, A.E. (1990) Slab-mantle interactions: Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology, 82, 187–207.CrossRefGoogle Scholar
  55. Roy, P.D. and Smykatz-Kloss, W. (2007) REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Chemie der Erde, 67, 55–68.CrossRefGoogle Scholar
  56. Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saikia, P.C., and Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93–103.CrossRefGoogle Scholar
  57. Savaşcin, Y. (1978) Foça-Urla Neojen volkanitlerinin mineralojik jeokimyasal incelemesi ve kökensel yorumu. Doçentlik Tezi, Ege Öniversitesi, Yerbilimleri Fakuültesi, 74 s.Google Scholar
  58. Savin, S.M. and Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 25–42.CrossRefGoogle Scholar
  59. Savin, S.M. and Lee, M. (1988) Isotopic studies of phyllosilicates. Pp. 189–223 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
  60. Sayın, ŞA. (2007) Origin of kaolin deposits: evidence from the Hisarcık (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 77–96.Google Scholar
  61. Şener, M. and Gevrek, A.I. (1986) Simav-Emet-Tavşanlı yörelerinin hidrotermal alterasyon zonları. Jeoloji Mühendisliği Dergisi, 28, 43–49.Google Scholar
  62. Seyitoğlu, G., Anderson, D., Nowel, G., and Scott, B.C. (1997) The evolution from Miocene potassic to Quaternary sodic magmatism in Western Turkey: implication for enrichment processes in the lithospheric mantle. Journal of Volcanology and Geothermal Research, 76, 127–147.CrossRefGoogle Scholar
  63. Sheppard, S.M.F., Nielsen, R.L. and Taylor, H.P. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphry copper deposits. Economic Geology, 64, 755–777.CrossRefGoogle Scholar
  64. Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Pp. 165–184 in: Stable Isotopes in High-Temperature Geological Processes (J.W. Valley, H.P. Taylor, Jr., and J.R. O’Neil, editors). Reviews in Mineralogy, 16, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
  65. Sheppard, S.M.F. and Gilg, H.A. (1996) Stable isotope geochemisty of clay minerals; The story of sloppy, silky, lumpy and tough, Cairns-Smith (1971). Clay Minerals, 31, 1–24.CrossRefGoogle Scholar
  66. Shikazono, N., Ogawa, Y., Utada, M., Ishiyama, D., Mizuta, T., Ishikawa, N., and Kubota, Y. (2008) Geochemical behavior of rare elements in hydrothermally altered rocks of the Kuroko mining area, Japan. Journal of Geochemical Exploration, 98, 65–79.CrossRefGoogle Scholar
  67. State Planning Organization of Turkey (2001) 8th Five-Year Development Plan, Mining Special Expert Commission Report, Volume 1, Industrial Minerals Sub-Commission, Ceramic clays—Kaolin—Pyrophyllite—Wollastonite—Talc Group, Ankara, 224 pp. (http://ekutup.dpt.gov.tr/madencil/sanayiha/oik622.pdf)Google Scholar
  68. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.Google Scholar
  69. Türkmenoğlu, A.G. and Işık, N.Y. (2008) Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, Western Turkey. Applied Clay Science, 42, 63–73.CrossRefGoogle Scholar
  70. Üstün, H. and Yetiş, C. (2007) Hisarcık (Emet-Kütahya) güneyinin Neojen stratigrafisi. 60. Türkiye Jeoloji Kurultayı Bildiri Üzleri, 460–462.Google Scholar
  71. Van der Marel, H.W. and Beutelspacher, H. (1976) Atlas of IR Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam, 396 pp.Google Scholar
  72. Wilson, M.J. (1987) X-ray powder diffraction methods. Pp. 26–98 in: A Handbook of Determinative Methods in Clay Mineralogy (M.J. Wilson, editor). Blackie & Sons Ltd, Glasgow, UK.Google Scholar
  73. Winchester, J.A. and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.CrossRefGoogle Scholar
  74. Yeh, H.W. and Savin, S.M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. O isotope evidence. Bulletin of the Geological Society of America, 88, 1321–1330.CrossRefGoogle Scholar
  75. Yıldız, A. and Kuşçu, M. (2001) Başören (Kütahya) bentonit yataklarının mineralojisi ve teknolojik özellikleri. 10. Ulusal Kil Sempozyumu, 269–281.Google Scholar
  76. Ziegler, K. (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41, 355–393.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2011

Authors and Affiliations

  • Selahattin Kadır
    • 1
    Email author
  • Hande Erman
    • 1
  • Hülya Erkoyun
    • 1
  1. 1.Eskişehir Osmangazi University, Department of Geological EngineeringEskişehirTurkey

Personalised recommendations