Advertisement

Clays and Clay Minerals

, Volume 58, Issue 5, pp 721–723 | Cite as

Reply to the Comment by Vidal, Dubacq, and Lanari on “The Role of H3O+ in the Crystal Structure of Illite”

  • Fernando NietoEmail author
  • Marcello Mellini
  • Isabel Abad
Article

Abstract

The arguments of Vidal et al. (2010) against the incorporation of H3O+ rather than of H2O in the interlayer position of illite are disputable. Stoichiometric arguments do indeed suggest that the excess water in the Silver Hill illite is in the formof H3O+. No reason exists to assume less water content in the IMt-2 sample than in those determined by Hower and Mowatt (1966) and confirmed by the thermogravimetric analyses of Nieto et al. (2010). The comparison between element contents calculated from end-members and those from the structural formula in figure 1 of Vidal et al. (2010) is not an experimental result, but rather a trivial mathematical artifact. The fact that thermodynamic models, based on the incorporation of interlayer H2O in illite, may provide reasonable estimates neither proves nor disproves the presence of H3O+; this is because thermodynamics is a non-atomistic, macroscopic approach.

Key Words

Composition Hydronium Illite Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, G. and Norrish, K. (1952) Hydrous micas. Mineralogical Magazine, 29, 929–932.CrossRefGoogle Scholar
  2. Cliff, G. and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.CrossRefGoogle Scholar
  3. Dubacq, B., Vidal, O., and De Andrade, V. (2010) Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contributions to Mineralogy and Petrology, 159, 159–174.CrossRefGoogle Scholar
  4. Frost, R. Wills, R., Kloprogge, J., and Martens, W. (2006) Thermal decomposition of hydronium jarosite. Journal of Thermal Analysis and Calorimetry, 83, 213–218.CrossRefGoogle Scholar
  5. Hower, J. and Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. American Mineralogist, 51, 825–854.Google Scholar
  6. Hishida, N. and Kimata, M. (2007) Hydronium ion in Al-bearing fluorapophyllite. Acta Crystallographica, A63, s272.CrossRefGoogle Scholar
  7. Mills, S.J., Hager, S.L., Leverett, P., Williams, P.A., and Raudsepp, M. (2010) The structure of H3O-exchanged pharmacosiderite. Mineralogical Magazine, 74, 487–492.CrossRefGoogle Scholar
  8. Nieto, F., Mellini, M., and Abad, I. (2010) The role of H3O+ in the crystal structure of illite. Clays and Clay Minerals, 58, 238–246.CrossRefGoogle Scholar
  9. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, Chemical Equilibria, and Rates in Natural Waters, 3r edition. John Wiley & Sons, Inc., New York.Google Scholar
  10. Vidal, O., Dubacq, B., and Lanari, P. (2010) Comment on “The role of H3O in the crystal structure of illite by F. Nieto, M. Melini, and I. Abad. Clays and Clay Minerals, 58, 238–246. Clays and Clay Minerals, 58, 717–720.CrossRefGoogle Scholar
  11. White, J.L. and Burns, A.F. (1963) Infrared spectra of hydroniumion in micaceous minerals. Science, 141, 800–801.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2010

Authors and Affiliations

  1. 1.Departamento de Mineralogía y Petrología and IACTUniversidad de GranadaGranadaSpain
  2. 2.Dipartimento di Scienze della TerraUniversità di SienaSienaItaly
  3. 3.Departamento de GeologíaUniversidad de JaénJaénSpain

Personalised recommendations