Clays and Clay Minerals

, Volume 58, Issue 5, pp 667–681 | Cite as

Effect of a Thermal Gradient on Iron-Clay Interactions

  • Marie-Camille Jodin-CaumonEmail author
  • Regine Mosser-Ruck
  • Davy Rousset
  • Aurelien Randi
  • Michel Cathelineau
  • Nicolas Michau


Disposal facilities in deep geological formations are considered to be a possible solution for long-term management of high-level nuclear waste (HLW). The design of the repository generally consists of a multiple-barrier system including Fe-based canisters and a clay backfill material. The Fe-clay system will undergo a thermal gradient in timeand space, theheat sourcebeing theHLW insidethecanisters. In the present paper, the effect of a thermal gradient in space on Fe-smectite interactions was investigated. For this purpose, a tube-in-tube experimental device was developed and an 80–300ºC thermal gradient was applied to a mixture of MX80 bentonite, metallic Fe (powder and plate), magnetite, and fluid over periods of 1 to 10 months. Transformed and newly formed clay minerals were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Mössbauer spectroscopy. The main mineralogical transformations were similar to those described for batch experiments: smectite was destabilized into an Fe-enriched trioctahedral smectite and Fe-serpentine or chlorite as a function of the experimental conditions. Newly formed clay was observed all along the walls of the gold tube. Their crystal chemistry was clearly different from the clays observed in the hot and cold part of the tubes. The thermal diffusion of elements was also observed, especially that of Mg, which migrated toward the hottest parts of the tubes. In the end, the thermal gradient affected the redox equilibria; more reduced conditions were observed in the hotter parts of the tubes.

Key Words

Bentonite Iron MX80 Smectite TEM-EDS Thermal Gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldeyrou, A., Vidal, O., and Fritz, B. (2003) Étude expérimentaledes transformations dephasedans un gradient thermique: application au granite de Soultz-sous-Forêts, France. Experimental study of phase transformations in a thermal gradient: application to the Soultz-sous-Forêts granite(France). Comptes Rendus Geosciences, 335, 371–380.CrossRefGoogle Scholar
  2. Bildstein, O., Trotignon, L., Perronnet, M., and Jullien, M. (2006) Modelling iron-clay interactions in deep geological disposal conditions. Physics and Chemistry of the Earth, Parts A/B/C, 31, 618–625.CrossRefGoogle Scholar
  3. Caillère, S., Hénin, S., and Rautureau, M. (1982) Minéralogie des Argiles. Structure et Propriétés Physico-Chimiques. Masson, Paris, 184 pp.Google Scholar
  4. Carlson, L., Karnland, O., Oversby, V.M., Rance, A.P., Smart, N.R., Snellman, M., Vähänen, M., and Werme, L.O. (2007) Experimental studies of the interactions between anaerobi-cally corroding iron and bentonite. Physics and Chemistry of the Earth, Parts A/B/C, 32, 334–345.CrossRefGoogle Scholar
  5. Charpentier, D., Devineau, K., Mosser-Ruck, R., Cathelineau, M., and Villiéras, F. (2006) Bentonite-iron interactions under alkaline condition: An experimental approach. Applied Clay Science, 32, 1–13.CrossRefGoogle Scholar
  6. Chipman, J. (1926) The Soret effect. Journal of the American Chemical Society, 48, 2577–2589.CrossRefGoogle Scholar
  7. de Combarieu, G., Barboux, P. and Minet, Y. (2007) Iron corrosion in Callovo-Oxfordian argilite: From experiments to thermodynamic/kinetic modelling. Physics and Chemistry of the Earth, 32, 346–358.CrossRefGoogle Scholar
  8. Goffe, B., Murphy, W.M., and Lagache, M. (1987) Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps. Contributions to Mineralogy and Petrology, 97, 438–450.CrossRefGoogle Scholar
  9. Guillaume, D. (2002) Etudeexpérimentale du systèmefer-smectite en présencedesolution a` 80ºC et 300ºC. PhD thesis, Université Henri Poincaré, Nancy, France, 216 pp.Google Scholar
  10. Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., Baronnet, A., and Michau, N. (2003) Experimental synthesis of chloritefrom smectiteat 300ºC in thepresenceof metallic Fe. Clay Minerals, 38, 281–302.CrossRefGoogle Scholar
  11. Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., and Michau, N. (2004) Experimental study of the transformation of smectite at 80 and 300ºC in the presence of Fe oxides. Clay Minerals, 39, 17–34.CrossRefGoogle Scholar
  12. Kostov, I. (1968) Mineralogy. Oliver and Boyd, Edinburgh and London, 587 pp.Google Scholar
  13. Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M., and Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597–612.CrossRefGoogle Scholar
  14. Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109–129.CrossRefGoogle Scholar
  15. Martin, F.A., Bataillon, C., and Schlegel, M.L. (2008) Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment. Journal of Nuclear Materials, 379, 80–90.CrossRefGoogle Scholar
  16. Martín, M., Cuevas, J., and Leguey, S. (2000) Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite. Applied Clay Science, 17, 55–70.CrossRefGoogle Scholar
  17. Neaman, A., Guillaume, D., Pelletier, M., and Villiéras, F. (2003) The evolution of textural properties of Na/Ca-bentonite following hydrothermal treatment at 80 and 300ºC in thepresence of Feand/or Feoxides. Clay Minerals, 38, 213–223.CrossRefGoogle Scholar
  18. Paszkuta, M., Rosanne, M., and Adler, P.M. (2006) Transport coefficients of saturated compact clays. Comptes Rendus Geosciences, 338, 908–916.CrossRefGoogle Scholar
  19. Perronnet, M., Villiéras, F., Jullien, M., Razafitianamaharavo, A., Raynal, J., and Bonnin, D. (2007) Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion. Geochimica et Cosmochimica Acta, 71, 1463–1479.CrossRefGoogle Scholar
  20. Perronnet, M., Jullien, M., Villiéras, F., Raynal, J., Bonnin, D., and Bruno, G. (2008) Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80ºC. Applied Clay Science, 38, 187–202.CrossRefGoogle Scholar
  21. Poinssot, C., Goffé, B., Magonthier, M.-C. and Toulhoat, P. (1996) Hydrothermal alteration of a simulated nuclear waste glass; effects of a thermal gradient and of a chemical barrier. European Journal of Mineralogy, 8, 533–548.CrossRefGoogle Scholar
  22. Poinssot, C., Jullien, M., and Pozo, C. (1997) Du gradient thermique comme moteur de la migration et des transformations minéralogiques. Pp. 196–203 in: Rapport Scientifique 1997, CEA, Saclay, France.Google Scholar
  23. Poinssot, C., Toulhoat, P., and Goffé, B. (1998) Chemical interaction between a simulated nuclear waste glass and different backfill materials under a thermal gradient. Applied Geochemistry, 13, 715–734.CrossRefGoogle Scholar
  24. Robert, C. and Goffé, B. (1993) Zeolitization of basalts in subaqueous freshwater settings: Field observations and experimental study. Geochimica et Cosmochimica Acta, 57, 3597–3612.CrossRefGoogle Scholar
  25. Rosanne, M., Paszkuta, M., Tevissen, E., and Adler, P.M. (2003) Thermodiffusion in compact clays. Journal of Colloid and Interface Science, 267, 194–203.CrossRefGoogle Scholar
  26. Rosanne, M., Paszkuta, M., and Adler, P.M. (2006) Thermodiffusional transport of electrolytes in compact clays. Journal of Colloid and Interface Science, 299, 797–805.CrossRefGoogle Scholar
  27. Rousset, D., Guillaume, D., Cathelineau, M., Dubessy, J., Mosser-Ruck, R., Rouiller, A., and Michau, N. (2006) Experimental reactivity of bentonite under linear thermal gradient. Bridging Clay: 43rd Annual Meeting of the CMS & 4ème Colloquedu GFA, June 3–7, Oléron, France.Google Scholar
  28. Sauzéat, E., Guillaume, D., Villiéras, F., Dubessy, J., François, M., Pfeiffert, C., Pelletier, M., Mosser-Ruck, R., Barrès, O., Yvon, J., and Cathelineau, M. (2001) Caractérisation minéralogique, cristallochimique et texturale de l’argilite MX80. Paris.Google Scholar
  29. Savage, D., Watson, C., Benbow, S., and Wilson, J. (2010) Modelling iron-bentonite interactions. Applied Clay Science, 47, 91–98.CrossRefGoogle Scholar
  30. Schlegel, M.L., Bataillon, C., Benhamida, K., Blanc, C., Menut, D., and Lacour, J.-L. (2008) Metal corrosion and argillitetransformation at thewater-saturated, high-temperature iron-clay interface: A microscopic-scale study. Applied Geochemistry, 23, 2619–2633.CrossRefGoogle Scholar
  31. Trouiller, A. (2006) Le Callovo-Oxfordien du bassin de Paris: du contexte géologiquea` la modélisation deses propriétés. Comptes Rendus Geosciences, 338, 815–823.CrossRefGoogle Scholar
  32. Vidal, O. (1997) Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient. European Journal of Mineralogy, 9, 123–140.CrossRefGoogle Scholar
  33. Vidal, O. and Durin, L. (1999) Aluminium mass transfer and diffusion in water at 400–550ºC, 2 kbar in the K2O–Al2O3-SiO2-H2O system driven by a thermal gradient or by a variation of temperature with time. Mineralogical Magazine, 63, 633–647.CrossRefGoogle Scholar
  34. Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., and Shibata, M. (2006a) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323–336.CrossRefGoogle Scholar
  35. Wilson, J., Savage, D., Cuadros, J., Shibata, M., and Ragnarsdottir, K.V. (2006b) The effect of iron on montmorillonitestability. (I) Background and thermodynamic considerations. Geochimica et Cosmochimica Acta, 70, 306–322.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2010

Authors and Affiliations

  • Marie-Camille Jodin-Caumon
    • 1
    Email author
  • Regine Mosser-Ruck
    • 1
  • Davy Rousset
    • 1
  • Aurelien Randi
    • 1
  • Michel Cathelineau
    • 1
  • Nicolas Michau
    • 2
  1. 1.G2R, Nancy-Université, CNRSVandœuvre-lès-NancyFrance
  2. 2.AgenceNationalepour la Gestion des Déchets Radioactifs (ANDRA)Direction Scientifique/Service Colis et MatériauxChâtenay-Malabry CedexFrance

Personalised recommendations