Clays and Clay Minerals

, Volume 58, Issue 5, pp 606–626 | Cite as

Saponite-Rich Black Shales and Nontronite Beds of the Permian Irati Formation: Sediment Sources and Thermal Metamorphism (Paraná Basin, Brazil)

  • Camila Wense Dias Dos Anjos
  • Alain Meunier
  • Edi Mendes Guimarães
  • Abderrazzak El AlbaniEmail author


Shales and claystones in the Permian Irati Formation consist of Al-rich or Fe-Mg clay minerals in its southern/central and northern parts, respectively. The constrasting compositions indicate particular geological and paleo-environmental conditions. The purpose of this study was to determine the conditions of formation by characterizing the black shales and claystones from different sections of the northern edge of the basin, some of which reveal the presence of intruded diabase sills.

Black shales consist of saponite or saponite-talc mixed layers, talc, lizardite, nontronite, and quartz. Green claystones are nontronite-rich but also contain lizardite, talc, and quartz. The chemical compositions of the black shale and claystones, except for one sample (POR-56), exhibit a positive correlation of the TiO2, Cr, and P2O5 contents with Al2O3, which typically results from weathering processes. The presence of saponite, nontronite, and some accessory minerals (spinel, pyroxene, native silver) suggests altered basic-ultrabasic rocks as sediment sources, consistent with the rare earth element (REE) composition being less than the Post-Archean Average Shale (PAAS) or North American Shale Composite (NASC) levels and with negative Ce and Eu anomalies. Sample POR-56 consists largely of nontronite and is anomalously rich in zircon, monazite, and apatite. Chemically, sample POR-56 is different from the black shales and claystones, being richer in Al2O3-Fe2O3, MgO-poor, and having greater REE contents than the PAAS or NASC standards. The POR-56 bed is probably a bentonite resulting from the alteration of volcanic ash in sea water (strong, negative Ce anomaly). The Zr/TiO2 vs. Nb/Y relation indicates that the magmatism was andesitic. During the Upper Permian, intermediate to basic volcanic activity was recorded in the Mitu Group of the Central Andes.

Close to the diabase sill, the black shales and claystones contain saponite, talc, and lizardite but nontronite is absent. Saponite and talc crystals, however, exhibit a larger coherent scattering domain size (CSDS) and are randomly oriented with respect to the sedimentary bedding. The thermal metamorphism effect is confirmed by the presence of secondary enstatite-augite and albite crystals.

Key Words

Ash Fall Level Black Shales Bazil Genesis Nontronite Paraná Basin Saponite Sediment Source Talc Thermal Metamorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, I., Jiménez-Millán, J., Molina, J.M., Nieto, F., and Vera, J.A. (2003) Anomalous reverse zoning of saponite and corrensite caused by contact metamorphism and hydrothermal alteration of marly rocks associated with subvolcanic bodies. Clays and Clay Minerals, 51, 543–554.CrossRefGoogle Scholar
  2. Almeida, C.M. and Do Carmo, D.A. (2005) Taxonomy and palaeoecology of Permian ostracods from the Paraná basin, Goiás State, Brazil. Pp. 11 in: International Symposium on Ostracoda, 15, Abstracts.Google Scholar
  3. Almeida, F.F.M., Hasuy, Y., Neves, B.B.B., and Fuck, R.A. (1981) Brazilian structural provinces: an introduction. Earth Sciences Review, 17, 1–29.CrossRefGoogle Scholar
  4. Alves, D.B. and Vaz, P.T. (2006) “Folhelhos verdes” Carboníferos da Bacia do Solimões: cinzas vulcânicas (K-bentonitas). Boletim de Geociências da Petrobrás, 14, 171–176.Google Scholar
  5. Amaral, S.E. (1970) Geologia e petrologia da Formação Irati (Permiano) no Estado de São Paulo. Boletim do Instituto de Geociências e Astronomia da USP, 2, 8–81.Google Scholar
  6. April, R.H. (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley. Clays and Clay Minerals, 29, 31–39.CrossRefGoogle Scholar
  7. Araújo, L.M., Trigüis, J.A., and Cerqueira, J.R. (1996) Avaliação do efeito térmico das intrusivas ígneas nas rochas geradoras da Formação Irati/Membro Assistência. PETROBRAS/E&P/NEXPAR, Relatório Interno, Curitiba, Brazil, 139 pp.Google Scholar
  8. Bailey, S.W. (1980) Structures of layer silicates. Pp. 2–113 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
  9. Bangert, B., Stollhofen, H., Lorenz, V., and Armstrong, R. (1999) The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, 29, 33–49.CrossRefGoogle Scholar
  10. Barbosa, O. and Gomes, F.A. (1958) Pesquisa de Petróleo na Bacia do Rio Corumbataí, Estado de São Paulo. Divisão de Geologia e Mineralogia do DNPM, Boletim, 171, 40 pp.Google Scholar
  11. Beaufort, D. and Meunier A. (1994) Saponite, corrensite and chlorite-saponite mixed-layers in the Sancerre-Couy deep drill-hole (France). Clay Minerals, 29, 47–61.CrossRefGoogle Scholar
  12. Bouchet, A., Lajudie, A., Rassineux, F., Meunier, A., and Atabek, R. (1992) Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden). Applied Clay Science, 7, 113–123.CrossRefGoogle Scholar
  13. Bristow, T.F., Kennedy, M.J., Derkowski, A., Droser, M.L., Ganjing, J., and Creaser, R.A. (2009) Mineralogical constraints on paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 106, 13190–13195.CrossRefGoogle Scholar
  14. Calarge, L.M., Meunier, A., and Formoso, M.L.L. (2003) A bentonite bed in the Aceguá (RS, Brazil) and Melo (Uruguay) areas: a highly crystallized montmorillonite. Journal of South American Earth Sciences, 16, 187–198.CrossRefGoogle Scholar
  15. Calarge, L.M., Meunier, A., Lanson, B., and Formoso, M.L.L. (2006) Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay. Anais da Academia Brasileira de Ciências, 78, 525–541.CrossRefGoogle Scholar
  16. Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., Smith, R.M.H., and Hancox, P.J. (2005) The Karoo basins of south-central Africa. Journal of African Earth Sciences, 43, 211–253.CrossRefGoogle Scholar
  17. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, 623 pp.CrossRefGoogle Scholar
  18. Colin, F., Nahon, D., Trescases, J.J., and Melfi, A.J. (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil: The supergene behavior of nickel. Economic Geology, 85, 1010–1023. -Geologia da Frente Mineiros/Portelândia. Goiânia, METAGO, Relatório de Etapa, Brazil, 35 pp.CrossRefGoogle Scholar
  19. Coutinho, J.M.V. and Hachiro, J. (2005) Distribution, mineralogy, petrography, provenance and significance of Permian ash-carrying deposits in the Parana Basin. Revista do Instituto de Geociências da USP, 5, 29–39.Google Scholar
  20. Coutinho, J.M.V., Hachiro, J., Coimbra, A.M., and Santos, P.R. (1988) Ash fall-derived vitroclastic tuffaceous sediments in the Permian of the Parana Basin and their provenance. Pp. 147–160 in: Gondwana Seven Proceedings (H.E. Ulbrich and A.C. Rocha Campos, editors). Instituto de Geociências-USP, São Paulo, Brazil.Google Scholar
  21. Cuevas, J., Villa, R.V., Ramirez, S., Petit, S., Meunier, A., and Leguey, S. (2003) Chemistry of Mg smectites in lacustrine sediments from the Vilcaro Sepiolite Deposit, Madrid Neogene Basin (Spain). Clays and Clay Minerals, 51, 457–472.CrossRefGoogle Scholar
  22. Dampare, S.B., Asiedu, D.K., Osae, S., Nyarko, B.J.B., and Banoeng-Yakubo, B. (2005) Determination of rare earth elements by neutron activation analysis in altered ultramafic rocks from the Akwatia district of the Birim diamontiferous field, Ghana. Journal of Radioanalytical and Nuclear Chemistry, 265, 101–106.CrossRefGoogle Scholar
  23. Dardenne, M.A. (2000) The Brasília Fold Belt. Pp. 231–263 in: Tectonic Evolution of South America (U.G. Cordani, E.J. Milani, A. Thomaz Filho, and D.A. Campos, editors). Folio Produção Editorial, Rio de Janeiro, Brazil.Google Scholar
  24. Decarreau, A., Petit, S., Vieillard, P., and Dabert, N. (2004) Hydrothermal synthesis of aegirine at 200ºC. European Journal of Mineralogy, 16, 85–90.CrossRefGoogle Scholar
  25. Desprairies, A. and Bonnot-Courtois, C. (1980) Relation entre la composition des smectitite d’alteration sous-marine et leur cortege de terres rares. Earth and Planetary Science Letters, 48, 124–130.CrossRefGoogle Scholar
  26. De Wit, M., Jeffrey, M., Bergh, H., and Nicolaysen, L. (1988) Geological map of sectors of Gondwana reconstructed to their disposition ca. 150 Ma. American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.Google Scholar
  27. Dos Anjos, C.W.D. (2003) A influência térmica de intrusões ígneas sobre pelitos e rochas carbonáticas da Formação Irati, em Goiás. Dissertação de Mestrado, Univ. de Brasília, Brasília, Brazil, 101 pp.Google Scholar
  28. Eggleton, R.A. and Boland, J.N. (1982) Weathering of enstatite to talc through a sequence of transitional phases. Clays and Clay Minerals, 30, 11–20.CrossRefGoogle Scholar
  29. Evensen, N.M., Hamilton, P.J., and O’Nions, R.K. (1978) Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42, 1199–1212.CrossRefGoogle Scholar
  30. Farmer, V.C. (1974) The layer silicates. Pp. 331–365 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
  31. Fontanaud, A. and Meunier, A. (1983) Mineralogical facies of a weathered serpentinized lherzolite from the Pyrenees, France. Clay Minerals, 18, 77–88.CrossRefGoogle Scholar
  32. Furquim, S.A.C., Graham, R.C., Barbiero, L., Queiroz Neto, de J.P., and Vallès, V. (2008) Mineralogy and genesis of smectites in an alkaline-saline environment of Pantanal wetland, Brazil. Clays and Clay Minerals, 56, 579–595.CrossRefGoogle Scholar
  33. Girardi, V.A.V., Melfi, A.J., and Amaral, S.E. (1978) Efeitos termais associados aos diabasios mesozóicos da Bacia do Parana. Boletim do Instituto de Geociências da USP, 9, 47–55.Google Scholar
  34. Gomes, J.B.P. (1959) Algumas observações sobre as intrusões de diabásio na Bacia Sedimentar do Paraná. Boletim Técnico da Petrobrás, 2, 7–12.Google Scholar
  35. Goodman, B.A., Russell, J.D., Fraser, A.R., and Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.CrossRefGoogle Scholar
  36. Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1994) The nontronite-saponite series: An experimental approach. European Journal of Mineralogy, 6, 99–112.CrossRefGoogle Scholar
  37. Gromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L. (1984) The “North American shale composite”: Its composition, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469–2482.CrossRefGoogle Scholar
  38. Hein, J.R. and Scholl, D.W. (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geological Society of America Bulletin, 89, 197–210CrossRefGoogle Scholar
  39. Hover, V.C., Walter, L.M., Peacor, D.R., and Martini, A.M. (1999) Mg-smectite authigenesis in a marine evaporative environment, salina Ometepec, Baja California. Clays and Clay Minerals, 47, 252–268.CrossRefGoogle Scholar
  40. Karakaya, N., Karakaya, M., Temel, A., Küpeli, S., and Tunoglu, C. (2004) Mineralogical and chemical characterization of sepiolite occurrences at Karapinar (Konya basin, Turkey). Clays and Clay Minerals, 52, 495–509.CrossRefGoogle Scholar
  41. Kastner, M. (1999) Oceanic minerals: Their origin, nature of their environment and significance. Proceedings of the National Academy of Sciences, 96, 3380–3387.CrossRefGoogle Scholar
  42. Kay, S., Ramos, V.A., Mpodozis, C., and Sruoga, P. (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwanaland margin: analogy to the Middle Proterozoic in North America? Geology, 17, 324–328.CrossRefGoogle Scholar
  43. Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley Graphite Mine, South Australia. Clays and Clay Minerals, 48, 537–548.CrossRefGoogle Scholar
  44. Kemp, S.J., Rochelle, C.A., and Merriman, R.J. (2005) Back-reacted saponite in Jurassic mudstones and limestones intruded by a Tertiary sill, Isle of Skye. Clay Minerals, 40, 263–282.CrossRefGoogle Scholar
  45. Keyser, N. and Zawada, P.K. (1988) Two occurrences of ash-flow tuff from the lower Beaufort Group in the Heilbron—Frankfort area, northern Orange Free State. South African Journal of Geology, 91, 509–521.Google Scholar
  46. Khoury, H.N., Eberl, D.D., and Jones, B.F. (1982) Origin of magnesium clays from the Amargosa desert, Nevada. Clays and Clay Minerals, 30, 327–336.CrossRefGoogle Scholar
  47. Kontak, D.J., Clark, A.H., Farrar, E., Archibald, D.A., and Baadsgaard, H. (1990) Late Paleozoic-early Mesozoic magmatism in the Cordillera de Carabaya, Puno, southeastern Peru: Geochronology and petrochemistry. Journal of South American Earth Sciences, 3, 213–230.CrossRefGoogle Scholar
  48. Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.CrossRefGoogle Scholar
  49. MacGregor, J.H. (1908) Mesosaurus Brasiliensis nov. sp. do Permiano do Brasil. Pp. 301–336 in: Relatório da Comissão de Estudos das Minas de Carvão de Pedra do Brasil, por I. C White. DNPM, Edição Fac-Similar 1988, Brasília.Google Scholar
  50. Matos, S.L.F., Yamamoto, J.K., Riccomini, C., Hachiro, J., and Tassinari, C.C.G. (2001) Absolute dating of Permian ash-fall in the Rio Bonito Formation, Parana Basin, Brazil. Gondwana Research, 4, 421–426.CrossRefGoogle Scholar
  51. Maynard, J.B., Chocyk, J.M., Gaines, R.R., Krekeler, M.P., Prokopenko, M., Summers, A.M., and Huff, W.D. (1996) Bentonites in the Late Permian (Tatarian) Irati Formation of Brazil: geochemistry and potential of stratigraphic correlation. Pp. 280 in: Geological Society of America Annual Meeting, 28, Denver, Colorado, Abstracts.Google Scholar
  52. McLachlan, I.R. and Jonker, J.P. (1990) Tuff beds in the northwestern part of the Karoo Basin. South African Journal of Geology, 93, 329–338.Google Scholar
  53. Mendes, J.C., Fúlfaro, V.J., Amaral, S.E., and Landim, P.M.B. (1966) A Formação Irati (Permiano) e facies associadas. Boletim da Sociedade Brasileira de Geologia, 15, 23–43.Google Scholar
  54. Meunier, A. (2005) Clays. Springer, Berlin.Google Scholar
  55. Meunier, A., Lanson, B., and Velde, B. (2004) Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France). Clay Minerals, 39, 317–332.CrossRefGoogle Scholar
  56. Milani, E.J. (1997) Evolução tectono-estratigráfica da Bacia do Parana e seu relacionamento com a geodinâmica Fanerozóica do Gondwana sulocidental. Tese de Doutorado, Univ. Federal do Rio Grande do Sul, Porto Alegre, Brazil, 255 pp.Google Scholar
  57. Milani, E.J. and Thomaz Filho, A. (2000) Sedimentary Basins of South America. Pp. 389–449 in: Tectonic Evolution of South America (U.G. Cordani, E.J. Milani, A. Thomaz Filho, and D.A. Campos, editors). In-Fólio Produção Editorial, Rio de Janeiro, Brazil.Google Scholar
  58. Nahon, D., Colin, P., and Tardy, Y. (1982) Formation and distribution of Mg-Fe-Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Minerals, 17, 339–348.CrossRefGoogle Scholar
  59. Noack, Y. and Duplay, J. (1983) Talc and the weathering hydrothermal alteration boundary. Sciences Géologiques Memoires, 72, 121–130.Google Scholar
  60. Noack, Y., Colin, F., Nahon, D., Delvigne, J., and Michaux, L. (1993) Secondary-mineral formation during natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, 293, 111–134.CrossRefGoogle Scholar
  61. Petit, S., Martin, F., Wiewióra, A., De Parseval, P., and Decarreau, A. (2004) Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319–326.CrossRefGoogle Scholar
  62. Petri, S. and Fúlfaro, V.J. (1983) Geologia do Brasil. Editora da Universidade de São Paulo, São Paulo, Brazil.Google Scholar
  63. Pimentel, M.M., Fuck, R.A., Jost, H., Ferreira Filho, C.F., and Araújo, S.M. (2000) The Basement of the Brasília Fold Belt and the Goiás Magmatic Arc. Pp. 195–229 in: Tectonic Evolution of South America (U.G. Cordani, E.J. Milani, A. Thomaz Filho, and D.A. Campos, editors). In-Fólio Produção Editorial, Rio de Janeiro, Brazil.Google Scholar
  64. Piper, D.Z. (1974) Rare earth elements in the sedimentary cycle: A summary. Chemical Geology, 14, 285–304.CrossRefGoogle Scholar
  65. Ramos, A.N. and Formoso, M.L.L. (1976) Clay mineralogy of the sedimentary rocks of the Parana Basin, Brazil. Revista Brasileira de Geociências, 6, 15–42.CrossRefGoogle Scholar
  66. Ramos, V.A. (2000) The Southern Central Andes. Pp. 561–604 in: Tectonic Evolution of South America (U.G. Cordani, E.J. Milani, A. Thomaz Filho, and D.A. Campos, editors). In-Fólio Produção Editorial, Rio de Janeiro, Brazil.Google Scholar
  67. Rehim, H.A.A.A., Mizusaki, A.M.P., Carvalho, M.D., and Monteiro, M. (1986) Talco e Estevensita na Formação Lagoa Feia da Bacia de Campos-Possíveis implicações no ambiente deposicional. Anais do Congresso Brasileiro de Geologia, 34, 416–425.Google Scholar
  68. Reynolds, R.C. (1980) Interstratified Clay Minerals. Pp. 249–303 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
  69. Reynolds, R.C. (1985) NEWMOD, A Computer Program for the Calculation of One-Dimensional Diffraction of Mixed-layer Clays. Published by the author, Hanover, New Hampshire, USA.Google Scholar
  70. Rodrigues, A.R. (2001) Projeto Calcario Montividiu. Relatório Final de Pesquisa, METAGO, Goiânia, Brazil, 16 pp.Google Scholar
  71. Rodrigues, R. and Quadros, L.P. (1976) Mineralogia de argilas e teor de Boro das formações paleozóicas da Bacia do Parana. Anais do Congresso Brasileiro de Geologia, 29, 351–379.Google Scholar
  72. Sakharov, B.A., Dubinska, E., Bylina, P., Kozubowski, J.A., Kaprón, G., and Frontczak-Baniewicz, M. (2004) Serpentine-smectite interestratified minerals from Lower Silesia (SW Poland). Clays and Clay Minerals, 52, 55–65.CrossRefGoogle Scholar
  73. Sanford, R.M. and Lange, F.W. (1960) Basin-study approach to oil evaluation of Parana Miogeosyncline, south Brazil. American Association of Petroleum Geologists Bulletin, 44, 1316–1370.Google Scholar
  74. Santos, R.V., Dantas, E., Alvarenga, C.J.S., Berdran, F., Reis, W., Guimarães, E.M., Oliveira, C.G., Marques-Toigo, M., Mendonça Filho, J.G., Dos Anjos, C.W.D., and Medeiros, S.R. (2003) Geochemical and thermal effects of basic intrusive rocks on sediments from the Irati Formation-northwestern Parana Basin. Short Papers of the South American Symposium on Isotope Geology, 4, 776–779.Google Scholar
  75. Santos, R.V., Sousa, P.A., Alvarenga, C.J.S., Dantas, E.L., Pimentel, M.M., Oliveira, C.G., and Araújo, L.M. (2006) SHRIMP U-Pb Zircon dating and palinology of bentonitic layers from the Permian Irati Formation: Stratigraphic implications for southwestern Gondwana. Gondwana Research, 9, 456–463.CrossRefGoogle Scholar
  76. Santos Neto, E.V. (1993) Caracterização Geoquímica e Paleoambiente Deposicional da Sequência Carbonato-Pelítica Superior do Membro Assistência, Formação Irati no Estado de São Paulo, Bacia do Parana. Dissertação de Mestrado, Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 203 pp.Google Scholar
  77. Sempere, T., Carlier, G., Soler, P., Fornari, M., Carlotto, V., Jacay, J., Arispe, O., Néraudeau, D., Cárdenas, J., Rosas, S., and Jimenez, N. (2002) Late Permian-Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics. Tectonophysics, 345, 153–181.CrossRefGoogle Scholar
  78. Stollhofen, H., Stanistreet, I.G., Bangert, B., and Grill, H. (2000) Tuffs, tectonism and glacially related sea-level changes, Carboniferous-Permian, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 127–150.CrossRefGoogle Scholar
  79. Tardy, Y. (1997) Petrology of Laterites and Tropical Soils. Balkema, Amsterdam.Google Scholar
  80. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK.Google Scholar
  81. Traoré, D., Beauvais, A., Chabaux, F., Peiffert, C., Parisot, J.C., Ambrosi, J.P., and Colin, F. (2008) Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite. American Mineralogist, 93, 22–30.CrossRefGoogle Scholar
  82. Velde, B., and Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  83. Viljoen, J.H.A. (1995) Piroklastiese afsettings von permouder-dom in die hoof-karookom. PhD thesis, Stellenbosch University, South Africa, 248 pp.Google Scholar
  84. White, D. (1908) Flora Fossil das Coal Measures do Brasil. Pp. 337–617 in: Relatório da Comissão de Estudos das Minas de Carvão de Pedra do Brasil, por I. C. White. DNPM, Edição Fac-Similar 1988, Brasília.Google Scholar
  85. Whitney, G. (1983) Hydrothermal reactivity of saponite. Clays and Clay Minerals, 31, 1–8.CrossRefGoogle Scholar
  86. Wilkins, R.W.T. and Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.Google Scholar
  87. Winchester, J.A. and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.CrossRefGoogle Scholar
  88. Yalçin, H. and Bozkaya, O. (2006) Mineralogy and geochemistry of Paleocene ultramafic- and sedimentary-hosted talc deposits in the southern part of the Sivas Basin, Turkey. Clays and Clay Minerals, 54, 333–350.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2010

Authors and Affiliations

  • Camila Wense Dias Dos Anjos
    • 1
    • 2
  • Alain Meunier
    • 1
  • Edi Mendes Guimarães
    • 2
  • Abderrazzak El Albani
    • 1
    Email author
  1. 1.Université de Poitiers-UMR6269-INSU CNRS, HydrASAPoitiersFrance
  2. 2.Instituto de GeociênciasUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations