Clays and Clay Minerals

, Volume 58, Issue 3, pp 340–350 | Cite as

New Template Effect in Hydrotalcite Synthesis. Nodular vs. Layered Morphologies

  • Alicia E. Sommer
  • Geolar FetterEmail author
  • Pedro Bosch
  • Victor H. Lara


The morphology of hydrotalcites determines their use in catalysis, biomedicine, or adsorption as they may work as anion exchangers or as drug deliverers. In catalysis, reagents need access to as much surface area as possible; in biomedicine, drugs have to be encapsulated. However, the parameters and the mechanisms which direct the synthesis towards a certain morphology are not well understood. Precipitating agents or crystallization conditions are expected to play a crucial role. In the present study, hydrotalcites were synthesized in the presence of two precipitating agents (NaOH or NH4OH) under three different crystallization conditions (conventional, microwave, or ultrasound irradiation) which determined the morphology of the final product, layered or vesicular. The features are explained through the template effect of the liberated gases on the co-precipitation and crystallization processes and consequently on the final structure/morphology of the synthesized solids. Indeed, the nodular particles crystallize using the effluent gases as templates. Fractal dimension and particle-size distributions, determined by small-angle X-ray scattering (SAXS) and gas adsorption are compared and correlated to the presence of ammonium. Although the materials obtained are heterogeneous, it is possible to propose a microscopic geode model.

Key Words

Ammonium Hydroxide Globular Hydrotalcite Microwave Irradiation Nanoporosity Nodule Spherical Materials Ultrasound Irradiation Vesicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allada, R.K., Peltier, E., Navrotsky, A., Casey, W.H., Johnson, C.A., Berbeco, H.T., and Sparks, D.L. (2006) Calorimetric determination of the enthalpies of formation of hydrotalcitelike solids and their use in the geochemical modeling of metals in natural waters. Clays and Clay Minerals, 54, 409–417.CrossRefGoogle Scholar
  2. Benito, P., Labajos, F.M., and Rives, V. (2006a) Uniform fast growth of hydrotalcite-like compounds. Crystal Growth Design, 6, 1961–1966.CrossRefGoogle Scholar
  3. Benito, P., Labajos, F.M., Rocha, J., and Rives, V. (2006b) Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous and Mesoporous Materials, 94, 148–158.CrossRefGoogle Scholar
  4. Cavani, F., Trifiro, F., and Vaccari, A. (1991) Hydrotalcitetype anionic clays: preparation, properties and applications. Catalysis Today, 11, 173–301.CrossRefGoogle Scholar
  5. Cotton, F.A. and Wilkinson, G. (1988) Qulmica Inorgcinica Avanzada. Limusa, Mexico.Google Scholar
  6. Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Structure and Bonding, 119, 1–87.Google Scholar
  7. Glatter, O. and Gruber, K. (1993) Indirect transformation in reciprocal space: desmearing of small-angle scattering data from partially ordered systems. Journal of Applied Crystallography, 26, 512–518.CrossRefGoogle Scholar
  8. Glatter, O. (1998) Comparison of two different methods for direct structure analysis from small-angle scattering data. Journal of Applied Crystallography, 21, 886–890.CrossRefGoogle Scholar
  9. Harrison, A. (editor) (1995) Fractals in Chemistry. Oxford University Press Inc., New York.Google Scholar
  10. He, J., Wei, M., Li, B., Kang, Y., Evans, D.G., and Duan, X. (2006) Preparation of layered double hydroxides. Structure and Bonding, 119, 89–119.CrossRefGoogle Scholar
  11. Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L., and Serna, C.J. (1985) IR characteristics of hydrotalcite-like compounds. Physics and Chemistry of Minerals, 12, 34–38.Google Scholar
  12. Jaber, M., Gaslain, F.O.M., and Miehe-Brendle, J. (2009) Rapid and direct synthesis of spherical organoclay. Clays and Clay Minerals, 57, 35–39.CrossRefGoogle Scholar
  13. Kim, M.-H. (2004) Modified Porods law estimated of the transition-layer thickness between two phases: test of triangular smooting function. Journal of Applied Crystallography, 37, 643–651.CrossRefGoogle Scholar
  14. Lei, X., Yang, L., Zhang, F., and Duan, X. (2006) A novel gasliquid contacting route for the synthesis of layered double hydroxides by decomposition of ammonium carbonate. Chemical Engineering Science, 61, 2730–2735.CrossRefGoogle Scholar
  15. Li, F. and Duan, X. (2006) Applications of layered double hydroxides. Structure and Bonding, 119, 193–223.CrossRefGoogle Scholar
  16. Lopez, T., Bosch, P., Ramos, E., Gomez, R., Novaro, O., Acosta, D., and Figueras, F. (1996) Synthesis and characterization of sol-gel hydrotalcites. Structure and texture. Langmuir, 12, 189–192.CrossRefGoogle Scholar
  17. Lopez, T., Bosch, P., Asomoza, M., Gomez, R., and Ramos, E. (1997) DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminium source effect on physicochemical properties. Materials Letters, 31, 311–316.CrossRefGoogle Scholar
  18. Martin, J.E. and Hurd, A.J. (1987) Scattering from fractals. Journal of Applied Crystallography, 20, 61–78.CrossRefGoogle Scholar
  19. Méheust, Y., Dagois-Bohy, S., Knudsen, K.D., and Fossum, J.O. (2007) Mesoscopic structure of dry-pressed clay samples from small-angle X-ray scattering measurements. Journal of Applied Crystallography, 40, s286–s291.CrossRefGoogle Scholar
  20. Olanrewaju, J., Newalkar, B.L., Mancino, C., and Komarneni, S. (2000) Simplified synthesis of nitrate form of layered double hydroxide. Materials Letters, 45, 307–310.CrossRefGoogle Scholar
  21. Paredes, S.P., Fetter, G., Bosch, P., and Bulbulian, S. (2006) Sol-gel synthesis of hydrotalcite-like compounds. Journal of Materials Science, 41, 3377–3382.CrossRefGoogle Scholar
  22. Pernyeszi, T. and Dekany, I. (2003) Surface fractal and structural properties of layered clay minerals monitored by small-angle X-ray scattering and low-temperature nitrogen adsorption experiments. Colloid and Polymer Science, 281, 73–78.CrossRefGoogle Scholar
  23. Pretsch, E., Buhlmann, P., and Affolter, C. (2000) Structure Determination of Organic Compounds. Springer, Zurich.CrossRefGoogle Scholar
  24. Rivera, J.A., Fetter, G., and Bosch, P. (2006) Microwave power effect on hydrotalcite synthesis. Microporous and Mesoporous Materials, 89, 306–314.CrossRefGoogle Scholar
  25. Rivera, J.A., Fetter, G., Giménez, Y., Xochipa, M.M., and Bosch, P. (2007) Nickel distribution in (Ni,Mg)/Al-layered double hydroxides. Applied Catalysis A, 316, 207–211.CrossRefGoogle Scholar
  26. Rives, V. and Ulibarri, M.A. (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61–120.CrossRefGoogle Scholar
  27. Sampieri, A., Fetter, G., Pfeiffer, H., and Bosch, P. (2007) Carbonate phobic (Zn,Mn)-Al hydrotalcite-like compounds. Solid State Sciences, 9, 394–403.CrossRefGoogle Scholar
  28. Sels, B.F., de Vos, D.E., and Jacobs, P.A. (2001) Hydrotalcitelike anionic clays in catalytic organic reactions. Catalysis Reviews, 43, 443–488.CrossRefGoogle Scholar
  29. Tichit, D. and Vaccari, A. (1998) Recent catalytic applications of hydrotalcite-type anionic clays. Applied Clay Science, 13, 311–326.CrossRefGoogle Scholar
  30. Valente, J.S., Cantú, M.S., Cortez, J.G.H., Montiel, R., Bokhimi, X., and López-Salinas, E. (2007) Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology. Journal of Physical Chemistry C, 111, 642–651.CrossRefGoogle Scholar
  31. Wang, Y., Zhang, F., Xu, S., Wang, X., Evans, D.G., and Duan, X. (2008) Preparation of layered double hydroxide microspheres by spray drying. Industrial Engineering Chemistry Research, 47, 5746–5750.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2010

Authors and Affiliations

  • Alicia E. Sommer
    • 1
  • Geolar Fetter
    • 1
    Email author
  • Pedro Bosch
    • 2
  • Victor H. Lara
    • 3
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de PueblaPueblaMexico
  2. 2.Instituto de Investigaciones en Materiales, Ciudad UniversitariaUniversidad Nacional Autónoma de MexicoMexicoMexico
  3. 3.Departamento de QuímicaUniversidad Autónoma Metropolitana — IztapalapaMéxicoMexico

Personalised recommendations