Clays and Clay Minerals

, Volume 58, Issue 3, pp 327–339 | Cite as

Use of Natural and Modified Magadiite As Adsorbents to Remove Th(IV), U(VI), and Eu(III) from Aqueous Media — Thermodynamic and Equilibrium Study

  • Denis L. GuerraEmail author
  • Josane N. Ferrreira
  • Mário J. Pereira
  • Rúbia R. Viana
  • Claudio Airoldi


The contamination of aquatic environments by toxic metals such as radionuclides is of great concern because of the tendency of those metals to accumulate in the vital organs of humans and animals, causing severe health problems. The objective of this study was to investigate the use of natural and modified magadiite clay as an adsorbent to remove Th(IV), U(VI), and Eu(III) from aqueous solutions. Magadiite from the Amazon region, Brazil, was modified chemically with 5-mercapto-1-methyltetrazole (MTTZ) using a multi-step or heterogeneous synthesis pathway. The natural and modified materials were characterized using 29Si and 13C nuclear magnetic resonance, scanning electron microscopy, nitrogen gas adsorption, and elemental analysis. The physical-chemical properties of the chemically modified magadiite sample were modified, e.g. the specific surface area changed from 35.0 to 678.9 m2 g−1. The ability of the magadiite to remove Th(IV), U(VI), and Eu(III) from aqueous solution was then tested by a series of adsorption isotherms adjusted to a Sips equation. The effects of properties such as pH, contact time, and metal concentration on the adsorption capacity were studied. The adsorption maxima were determined to be 7.5 × 10−3, 9.8 × 10−3, and 12.9 × 10−3 mmol g−1 for Th(IV), U(VI), and Eu(III), respectively. From calorimetric determinations, the quantitative thermal effects for all these cations/basic center interactions gave exothermic enthalpy, negative Gibbs free energy, and positive entropy, confirming the energetically favorable conditions of such interactions at the solid/liquid interface for all systems.

Key Words

Calorimetry Chemical Synthesis Interfaces Magadiite Surface Properties Thermodynamic Properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcantara, E.F.C., Faria, E.A., Rodrigues, D.V., Evangelista, S.M., DeOliveira, E., Zara, L.F., Rabelo, D., and Prado, A.G.S. (2007) Modification of silica gel by attachment of mercaptobenzimidazole for use in removal Hg(II) from aqueous media: A thermodynamic approach. Surface Science, 311, 1–7.Google Scholar
  2. Almond, G.G., Harris, R.K., and Franklin, K.R. (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. Journal of Materials Chemistry, 7, 681–687.CrossRefGoogle Scholar
  3. Babel, S. and Kurniawan, T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243.CrossRefGoogle Scholar
  4. Barret, E.P., Joyner, L.G., and Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.CrossRefGoogle Scholar
  5. Beurlen, H., Da Silva, M.R.R., Thomas, R., Soares, D.R., and Olivier, P. (2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil. Mineralium Deposita, 43, 207–228.CrossRefGoogle Scholar
  6. Brunauer, S., Emmett, P.H., and Teller E.E. (1938) The adsorption of gas in multimolecular layer. Journal of the American Chemical Society, 60, 309–319.CrossRefGoogle Scholar
  7. Cestari, A.R., Vieira, E.F.S., Vieira, G.S., da Costa, L.P., Tavares, A.M.G., Loh, W., and Airoldi, C. (2009) The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant — The temperature dependence and a thermodynamic multivariate analysis. Journal of Hazardous Materials, 161, 307–316.CrossRefGoogle Scholar
  8. Dias Filho, N.L. (1998) Adsorption of copper(II) and cobalt(II) complexes on a silica gel surface chemically modified with amino-1,2,4-triazole. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 144, 219–227.CrossRefGoogle Scholar
  9. Díaz, U., Cantin, A., and Corma, A. (2007) Novel layer organic-inorganic hybrid materials with bridged silsesquioxanes as pillars. Chemistry of Materials, 19, 3686–3693.CrossRefGoogle Scholar
  10. Evangelista, S.H.M., De Oliveira, E., Castro, G.R., Zara, L.F., and Prado, A.G.S. (2007) Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surface Science, 601, 2194–2202.CrossRefGoogle Scholar
  11. Fialips, C.I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002) Infrared study of reduced and reduced-reoxidized ferruginous smectite. Clays and Clay Minerals, 50, 455–469.CrossRefGoogle Scholar
  12. Freundlich, H.M.F. (1906) Über die adsorption in Iösungen. Zeitschrift für Physikalische Chemie (Leipzig), 57A, 385–470.Google Scholar
  13. Garces, J.M., Rocke, S.C., Crowder, C.E., and Hasha, D.L. (1988) Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites. Clays and Clay Mnerals, 36, 409–418.CrossRefGoogle Scholar
  14. Guerra, D.L., Lemos, V.P., Airoldi, C., and Angelica, R.S. (2006) Influence of the acid activation of pillared smectites from Amazon (Brazil) in adsorption process with butilamine. Polyhedron, 25, 2880–2890.CrossRefGoogle Scholar
  15. Guerra, D.L., Airoldi, C., Lemos, V.P., Angélica, R.S. and Viana, R.R. (2007) Aplicação de Al-PILC na adsorção de Cu2+, Ni2+,Co2+ utilizando modelos físico-químicos de adsorção. Eclética Química, 32, 51–60.CrossRefGoogle Scholar
  16. Guerra, D.L., Airoldi, C., Lemos, V.P., and Angélica, R.S. (2008a) Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal. Journal of Hazardous Materials, 155, 230–242.CrossRefGoogle Scholar
  17. Guerra, D.L., Airoldi, C., and Viana, R.R. (2008b) Performance of modified montmorillonite clay in mercury adsorption process and thermodynamic studies. Inorganic Chemistry Communications, 11, 20–24.CrossRefGoogle Scholar
  18. Guo, Y., Wang, Y., Yang, Q.-X., Li, G.-D., Wang, C.-S, Cui, Z.-C., and Chen, J.-S. (2004) Preparation and characterization of magadiite grafted with an azobenzene derivative. Solid State Sciences, 6, 1001–1006.CrossRefGoogle Scholar
  19. Ho, Y.S. and McKay, G.M. (1999) Pseudo-second order model for sorption process. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  20. Huheey, J.E., Keiter, E.A., and Keiter, R.L. (1993) Inorganic Chemistry, Principles of Structure and Reactivity. Harper Collins, New York.Google Scholar
  21. Jänchen, J., Morris, R.V., Bish, D.L., Janssen, M., and Hellwig, U. (2009) The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under Martian environmental conditions. Icarus, 200, 463–467.CrossRefGoogle Scholar
  22. Karadag, D., Koc, Y., Turan, M., and Ozturk, M. (2007) A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolites. Journal of Hazardous Materials, 144, 432–437.CrossRefGoogle Scholar
  23. Komori, Y., Miyoshu, M., Hayashi, S., Sugahara, Y., and Kuroda, K. (2000) Characterization of silanol groups in protonated magadiite by 1H and 2H solid-state nuclear magnetic resonance. Clays and Clay Minerals, 48, 632–637.CrossRefGoogle Scholar
  24. Lagergren, S. (1898) About the theory of so-called adsorption of soluble substances. Kungliga Suenk Vetenskapsakademiens Handlingar, 241, 1–39.Google Scholar
  25. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.CrossRefGoogle Scholar
  26. Lazarin, A.M. and Airoldi, C. (2007) Thermochemistry of intercalation of n-alkylmonoamines into lamellar hydrated barium phenylarsonate. Thermochimica Acta, 454, 43–49.CrossRefGoogle Scholar
  27. Leppert, D. (1990) Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Mining Engineering, 42, 604–608.Google Scholar
  28. Macedo, T.R., Petrucelli, G.C., and Airoldi, C. (2007) Silicic acid magadiite guest molecules and features related to the thermodynamics of intercalation. Clays and Clay Minerals, 55, 151–159.CrossRefGoogle Scholar
  29. Machado, T.R., Fonseca, M.G., Arakaki, L.N.H., and Oliveira, S.F. (2004) Silica gel containing sulfur, nitrogen and oxygen as adsorbents centers on surface for removing copper from aqueous/ethanolic solutions. Talanta, 63, 317–322.CrossRefGoogle Scholar
  30. Malkoc, E., Nuhoglu, Y., and Dundar, M. (2006) Adsorption of chromium(VI) on pomace — an olive oil industry waste: batch and column studies. Journal of Hazardous Materials, 138, 142–151.CrossRefGoogle Scholar
  31. Mizukami, N., Mizukami, N., Tsujimura, M., Kuroda, K., and Ogawa, M. (2002) Preparation and characterization of Eumagadiite intercalation compounds. Clays and Clay Minerals, 50, 799–806.CrossRefGoogle Scholar
  32. Pérez-Quintanilla, D.P., Del Hierro, I., Fajardo, M., and Serra, I (2007) Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole. Journal of Colloid and Interface Science, 313, 551–562.CrossRefGoogle Scholar
  33. Pérez-Quintanilla, D.P., Del Hierro, I., Fajardo, M., and Serra, I. (2006) 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. Journal of Hazardous Materials, 134, 245–256.CrossRefGoogle Scholar
  34. Prado, A.G.S. and Airoldi, C. (2001) Adsorption preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4-dichlorophenoxyacetic acid. Analytica Chimica Acta, 432, 201–211.CrossRefGoogle Scholar
  35. Ruiz, V.S.O. and Airoldi, C. (2004) Thermochemical data for n-alkylmonoamine intercalation into crystalline lamellar zirconium phenylphosphonate. Thermochimica Acta, 420, 73–78.CrossRefGoogle Scholar
  36. Salih, B., Denizli, A., Kavakli, C., and Pipkin, E. (1998) Adsorption of heavy metal ions onto dithizone-anchored poly (EGDMA-HEMA) microbeads. Talanta, 46, 1205–1213.CrossRefGoogle Scholar
  37. Shahwan, T. and Erten, H.N. (2005) Characterization of Sr2+ uptake on natural minerals of kaolinite and magnesite using XRPD, SEM/EDS, XPS, and DRIFT. Radiochimica Acta, 93, 225–232.CrossRefGoogle Scholar
  38. Shanmugharaj, A.M., Rhee, K.Y., and Ryu, S.H. (2006) Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854–859.CrossRefGoogle Scholar
  39. Sharma, P. and Tomar, R. (2008) Synthesis and application of an analogue of mesolite for removal of uranium(VI), thorium(IV), and europium(III) from aqueous waste. Microporous and Mesoporous Materials, 116, 641–652.CrossRefGoogle Scholar
  40. Sheng, G., Hu, J., and Wang, X. (2008) Sorption properties of Th(IV) on the raw diatomite — Effects of contact time, pH, ionic strength and temperature. Applied Radiation and Isotopes, 66, 1313–1320.CrossRefGoogle Scholar
  41. Sips, R. (1948) On the structure of a catalyst surface. Journal of Chemical Physics, 16, 490–495.CrossRefGoogle Scholar
  42. Stucki, J.W., Wu, J., Gan, H., Komadel, P., and Banin A. (2000) Effect of iron oxidation state and organic cations on dioctahedral smectite hydration. Clays and Clay Minerals, 48, 290–298.CrossRefGoogle Scholar
  43. Tang, X., Li, Z., and Chen, Y. (2009) Adsorption behavior of Zn(II) on calcinated Chinese loess. Journal of Hazardous Materials, 161, 824–834.CrossRefGoogle Scholar
  44. Xia, K., Bleam, W., and Helmke, P.A. (1997) Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 61, 2223–2235.CrossRefGoogle Scholar
  45. Xiu-Wen, W., Hong-Wen, M., Jin-Hong, L., Zhang, J., and Zhi-Hong, L. (2007) The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II). Journal of Colloid and Interface Science, 315, 555–561.CrossRefGoogle Scholar
  46. Xu, D., Wang, K.X., Chen, C.L., Zhou, X., and Tan, X.L. (2006) Influence of soil humic acid and fulvic acid on sorption of Thorium(IV) on MX-80 bentonite. Radiochimica Acta, 94, 429–434.Google Scholar

Copyright information

© The Clay Minerals Society 2010

Authors and Affiliations

  • Denis L. Guerra
    • 1
    Email author
  • Josane N. Ferrreira
    • 1
  • Mário J. Pereira
    • 1
  • Rúbia R. Viana
    • 1
  • Claudio Airoldi
    • 2
  1. 1.Universidade Federal de Mato Grosso, UFMTCentro de Recursos MineraisCuiabáBrazil
  2. 2.Chemistry InstituteState University of CampinasCampinasBrazil

Personalised recommendations