Clays and Clay Minerals

, Volume 53, Issue 3, pp 250–267 | Cite as

Clay Mineralogy and Chemical Composition of Bentonites from the Gourougou Volcanic Massif (Northeast Morocco)

  • Mohamed Ddani
  • Alain MeunierEmail author
  • Mohamed Zahraoui
  • Daniel Beaufort
  • Mohamed El Wartiti
  • Claude Fontaine
  • Boubker Boukili
  • Benacer El Mahi


The Gourougou volcanic massif (northeastern Morocco) is actively prospected for bentonite deposits. Five bentonites originating from different environments were selected for the present study: hydrothermal alteration of obsidian perlite glass inside the volcanoes themselves (Providencia and Tribia deposits); alteration of pyroclastic flows in a marine shallow water to lagoonal lacustrine environment (Ibourhardayn deposit); ash falls in marine or lacustrine systems (Moulay Rachid and Melg el Ouidan (formerly Camp Berteau) deposits). All of these bentonites were probably formed from volcanic glass originating from a rhyolitic magma at different stages of differentiation as shown by slight variations of REE and incompatible element abundances. The crystal-chemical characteristics of the smectite vary according to alteration conditions: beidellite predominates in hydrothermal systems, whereas montmorillonite predominates in lagoonal and lacustrine environments, and mixed-layer beidellite-montmorillonite in the sea-water-altered pyroclastic flows. All these dioctahedral smectites exhibit a heterogeneous distribution of charge as shown by the presence of partially expandable (1 EG) or non- expandable (0 EG) layers in the K-saturation state. The proportion of the collapsed or partially expandable layers is not related to the average layer charge or to the cation exchange capacity. This militates for an overall heterogeneous charge distribution. Compared to other natural or experimental alteration systems of similar rhyolitic glass, the formation of beidellite or montmorillonite appears to be controlled by the amounts of Mg in the system.

Key Words

Alteration CEC Layer Charge Smectite Volcanic Glass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ait Brahim, L (1991) Tectoniques cassantes et états de contraintes récentes au Nord du Maroc. PhD thesis, Université Mohammed V Rabat, Morocco, 233 pp.Google Scholar
  2. Benson, R.H., Rakic-El-Bied, K. and Bonaduce, G. (1991) An important current reversal (influx) in the Rifain corridor (Morocco) at the Tortonian-Messinian Boundary: the end of Tethys ocean. Paleoceanography, 6, 164–192Google Scholar
  3. Berry, R. (1999) Eocene and Oligocène Otay-type waxy bentonites of San Diego county and Baja California: chemistry, mineralogy, petrology and plate tectonic implications. Clays and Clay Minerals, 47, 70–83.Google Scholar
  4. Boles, J.R. and Surdam, R.C. (1979) Diagenesis of volcanogenie sediments in a Tertiary saline lake, Wagon Red Formation. American Journal of Science, 279, 832–853.Google Scholar
  5. Calarge, L., Lanson, B., Meunier, A. and Formoso, M.L. (2003) The smectitic minerals in a bentonite deposit from Melo (Uruguay). Clay Minerals, 38, 25–34.Google Scholar
  6. Christidis, G. (1998) Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379–399.Google Scholar
  7. Christidis, G. (2001) Formation and growth of smectites in bentonites: a case study from Kimolos island, Aegean, Greece. Clays and Clay Minerals, 49, 204–215.Google Scholar
  8. Christidis, G. and Dunham, A.C. (1993) Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks. A case study from Milos Island, Greece. Clay Minerals, 28, 255–275.Google Scholar
  9. Christidis, G. and Dunham, A.C. (1997) Compositional variations in smectites: Part II: Alteration of acidic precursors. A case study from Milos Island, Greece. Clay Minerals, 32, 253–270.Google Scholar
  10. Claret, F., Bauer, A., Schäfer, T., Griffault, L. and Lanson, B. (2002) Experimental investigation of the interaction of clays with high pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France). Clays and Clay Minerals, 50, 633–646.Google Scholar
  11. Davies, D.K., Almon, W.R., Bonis, S.B. and Hunter, B.E. (1979) Deposition and diagenesis of Tertiary-Holocene volcaniclastics, Guatemala. SEPM Special Publication, 26, 281–306.Google Scholar
  12. De La Fuente, S., Cuadros, J., Fiore, S. and Linares, J. (2000) Electron microscopy study of volcanic pyroclastic flow alteration to illite-smectite under hydrothermal conditions. Clays and Clay Minerals, 48, 339–350.Google Scholar
  13. Desprairies, A. and Bonnet-Courtois, C. (1980) Relation entre la composition des smectites d’altération sous-marine et leur cortège de terres rares. Earth and Planetary Science Letters, 48, 124–130.Google Scholar
  14. Drits, V.A., Lindgreen, H., Sakharov, B.A. and Salyn, A.S. (1997) Sequence structure transformation of illite-smectitevermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Minerals, 33, 351–371.Google Scholar
  15. Duggen, S., Hoernle, K., Bogaard, van den P. and Harris, C. (2004) Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth and Planetary Science Letters, 218, 91–108.Google Scholar
  16. El Bakkali, S. (1995) Volcanologie et magmatologie du système du Gourougou (Rif oriental, Maroc). PhD thesis, Univertité Biaise Pascal, Clermont-Ferrand H, France, 283 pp.Google Scholar
  17. Evensen, G.R., Hamilton, P.J. and O’Nions, R.K. (1978) Rareearth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42, 1199–1212.Google Scholar
  18. Fiore, S. Huertas, F.J., Huertas, J. and Linares, J. (2001) Smectite formation in rhyolite obsidian as inferred by microscopic (SEM-TEM-AEM) investigation. Clay Minerals, 36, 489–500.Google Scholar
  19. Hein, J.R. and Scholl, D.W. (1978) Diagenesis and distribution of late Cenozoic volcanic sediments in the southern Bering Sea. Geological Society of America Bulletin, 89, 197–210.Google Scholar
  20. Grim, R.E. and Güven, N. (1978) Bentonites, Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, 24, Elsevier, Amsterdam, 256 pp.Google Scholar
  21. Hernandez, J. (1983) Le volcanisme Miocène du Rif Oriental (Maroc): Géologie, pédologie et minéralogie d’une province shoshonitique. PhD thesis, Université Pierre et Marie Curie, Paris VI, France, 592 pp.Google Scholar
  22. Hernandez, J. (1986) Pétrologie du massif volcanique de Guiliz (Maroc Oriental): Cristallisation fractionnée, mélange de magmas et transferts de fluides dans une série shoshonitique. Journal of African Earth Sciences, 5, 4, 381–399.Google Scholar
  23. Hofmann, U. and Kiemen, R. (1950) Verlust der Austauschfähigkeit von Lithiuminonen an bentonit durch Erhitzung. Zeitschrift für Anorganische und Allgemeine Chemie, 262, 95–99.Google Scholar
  24. Huertas, F.J., Cuadros, J., Huertas, F. and Linares, J. (2000) Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series. American Journal of Science, 300, 504–527.Google Scholar
  25. Huff, W.D., Anderson, T.B., Rundle, C.C. and Odin, G.S. (1991) Chemostratigraphy, K-Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands-Down-Longford terrane, British Isles. Journal of the Geological Society, 148, 861–868.Google Scholar
  26. Imbert, T. and Desprairies, A. (1987) Neoformation of halloysite on volcanic glass in a marine environment. Clay Minerals, 31, 81–91.Google Scholar
  27. Inoue, A., Bouchet, A., Velde, B. and Meunier, A. (1989) A convenient technique to estimate smectite layer percentage in randomly interstratified illite/smectite minerals. Clays and Clay Minerals, 37, 227–234.Google Scholar
  28. Keller, J., Ryan, W.B.F., Ninkovich, D. and Altherr, R. (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 y as recorded in deep-sea sediments. Geological Society of America Bulletin, 89, 591–564.Google Scholar
  29. Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.Google Scholar
  30. Linares, J. (1985) The process of bentonite formation in Cabo de Gata, Almeréa, Spain. Mineralogica y Petrographica Acta, 29-A, 17–33.Google Scholar
  31. Maury, R.C., Fourcade, S., Coulon, C., El Azzouzi, M., Bellon, H., Coutelle, A., Ouabadi, A., Semroud, B., Megartsi, M., Cotten, J., Belanteur, O., Louni-Hacini, A., Pique, A., Cardevila, R., Hernandez, J. and Rehault, J.P. (2000) Postcollisional neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab break off. Comptes Rendus de l’Académie des Sciences, Paris, 331, 159–173.Google Scholar
  32. Meunier, A. and Velde, B. (1989) Solid solutions in I/S mixed layer minerals and illite. American Mineralogist, 74, 1106–1112.Google Scholar
  33. Meunier, A., Lanson, B. and Velde, B. (2004) Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France). Clay Minerals, 39, 317–332.Google Scholar
  34. Moore, D.M. and Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.Google Scholar
  35. Patrier, P., Beaufort, D., Mas, A. and Traineau, H. (2003) Surficial clay assemblage associated with the hydrothermal activity of Bouillante (Guadeloupe, French West Indies). Journal of Volcanology and Geothermal Research, 126, 143–156.Google Scholar
  36. Pique, A., Ait Brahim, L., El Azzouzi, M., Maury, R.C., Bellon, H., Semroud, B. and Laville, E. (1998) Le poinçon maghrébin: contraintes tectoniques et géochimiques. Comptes Rendus de l’Académie des Sciences, Paris, 326, 575–581.Google Scholar
  37. Plançon, A. and Drits, V.A. (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- or three-component mixed-layer minerals. Clays and Clay Minerals, 48, 57–62.Google Scholar
  38. Reynolds, R.C. (1992) X-ray diffraction studies of illite/smectite from rocks, <1 μ randomly oriental powders, and <1 μm oriented powder aggregates. The absence of laboratory-induced artifacts. Clays and Clay Minerals, 40, 387–396.Google Scholar
  39. Sato, T., Watanabe, T. and Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103–113.Google Scholar
  40. Senkayi, A.L., Dixon, J.B., Hossner, L.R., Abder-Ruhman, M. and Fanning, D.S. (1984) Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua formation of East-Central Texas. Clays and Clay minerals, 32, 259–271.Google Scholar
  41. Weaver, C.E (1989) Clay, Muds and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam, 819 pp.Google Scholar
  42. Yamada, H., Yoshioka, K., Tamura, K., Fujii, K. and Nakazawa, H. (1999) Compositional gap in dioctahedraltrioctahedral smectite system: beidellite-saponite pseudobinary join. Clays and Clay Minerals, 47, 803–810.Google Scholar
  43. Zielinski, R.A. (1979) Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T=120°C, P=210 kg/cm2. Chemical Geology, 27, 47–63.Google Scholar
  44. Zielinski, R.A. (1980) Stability of glass in the geologic environment: some evidence from studies of natural silicate glasses. Nuclear Technology, 51, 197–200.Google Scholar
  45. Zielinski, R.A. (1982) The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome formation, Colorado, USA. Chemical Geology, 35, 185–204.Google Scholar
  46. Zielinski, R.A. (1985) Element mobility during alteration of silicic ash to kaolinite a study of tonstein. Sedimentology, 32, 567–579.Google Scholar

Copyright information

© The Clay Minerals Society 2005

Authors and Affiliations

  • Mohamed Ddani
    • 1
    • 2
  • Alain Meunier
    • 1
    Email author
  • Mohamed Zahraoui
    • 2
  • Daniel Beaufort
    • 1
  • Mohamed El Wartiti
    • 2
  • Claude Fontaine
    • 1
  • Boubker Boukili
    • 2
  • Benacer El Mahi
    • 2
  1. 1.HYDRASA-UMR 6532 CNRSUniversité de PoitiersPoitiersFrance
  2. 2.Faculté des Sciences Agdal, Département de Sciences de la TerreLaboratoire de Géologie appliquée, Université Mohammed VRabatMorocco

Personalised recommendations